

Impact of implementing an automatic 5-day antimicrobial stop order policy on antibiotic utilization

Matthew Vickers, PharmD
Ascension St. Vincent's
PGY1 Pharmacy Resident
matthew.vickers@ascension.org

Disclosure Statement

- Disclosure Statement: These individuals do not have anything to disclose concerning possible financial or personal relationships with commercial entities (or their competitors) that may be referenced in this presentation
 - Primary Investigator:
 - Matthew Vickers, PharmD
 - Co-Investigators:
 - Calvin Tucker, PharmD, BCPS, BCCCP
 - Bryan Allen, PharmD, BCPS, BCCCP
 - Luke Miller, PharmD, BCPS
 - Megan Keese, PharmD, BCPS
 - Abdel Bello, PharmD

Presentation Objective

- Recognize the goals of automatic antimicrobial stop order policies

Antibiotic Resistance

- One of the largest threats in healthcare today
- Greater than 23,000 deaths yearly due to antimicrobial resistant infections
- Several strategies exist to combat resistance
 - Antimicrobial cycling
 - Narrow-spectrum antibiotics
 - Combination antibiotic therapy
 - Decreased utilization

Ventola CL. P&T. 2015;40(4):277-83.

CDC and Prevention. (2017).

Kollef MH. Clin Infect Dis. 2006;43 Suppl 2:S82-8.

Antibiotic Resistance

- One of the largest threats in healthcare today
- Greater than 23,000 deaths yearly due to antimicrobial resistant infections
- Several strategies exist to combat resistance
 - Antimicrobial cycling
 - Narrow-spectrum antibiotics
 - Combination antibiotic therapy
 - **Decreased utilization**

Ventola CL. P&T. 2015;40(4):277-83.

CDC and Prevention. (2017).

Kollef MH. Clin Infect Dis. 2006;43 Suppl 2:S82-8.

Automatic Stop Orders (ASOs)

- Implemented in 71% of university-affiliated institutions
- Function of computerized order-entry systems
- Automatically discontinue drugs that require regular review (e.g., antibiotics)
- Goals of an ASO:
 - Encourage active reassessment
 - Evaluate need for continuation of treatment
 - Minimize antibiotic use

ASOs in the Literature

	Duration of ASO	Population	Antibiotic outcomes
Murray, et al (2014)	5 days	502 Adults	Duration: 8.3 to 6.8 days ($p < 0.0001$) Adverse effects: 31% to 19% ($p = 0.03$)
Ross, et al (2016)	48 hours	116,893 Children	No differences in mortality, 30-day readmission, or length of stay
Tolia, et al (2017)	48 hours	674 Neonates	Duration \rightarrow 6.5 to 4.0 days No mortality differences
Grant, et al (2018)	48 hours	488 Neonates	>48 -hrs of antibiotics \rightarrow 81% to 27% Lumbar punctures \rightarrow 35% to 20%

Lack of clinical data in adult populations

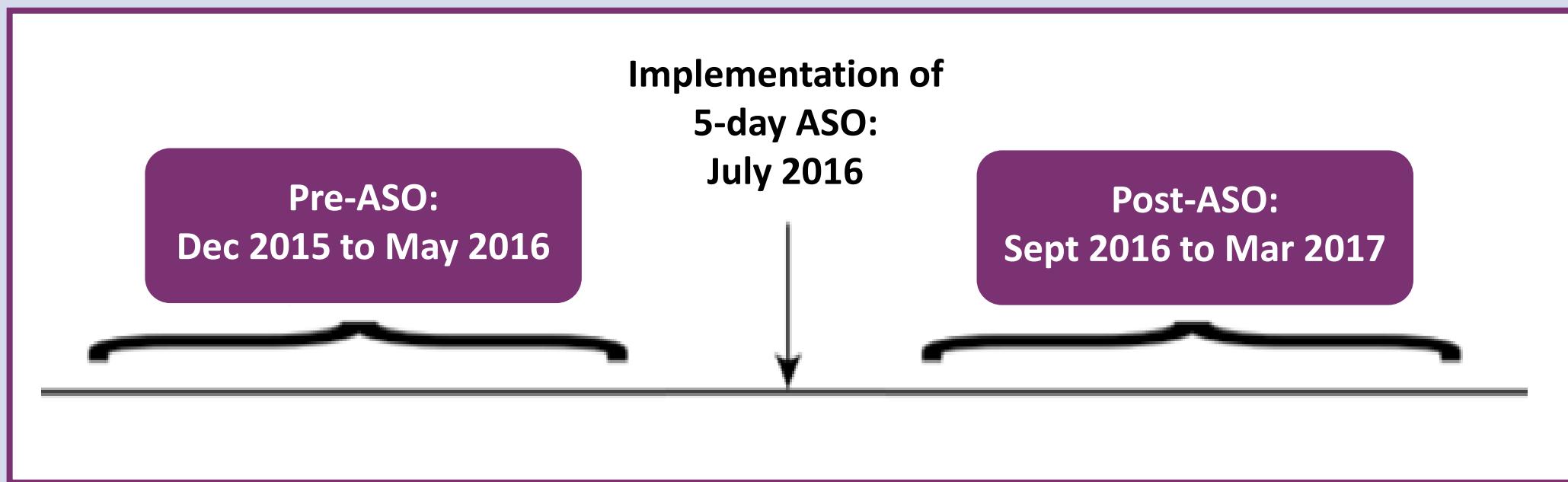
- Therapeutic efficacy of antibiotics within ASOs

Safety concerns

- Inappropriate discontinuation
- Patient harm

Ascension St. Vincent's recently initiated a 5-day automatic antibiotic stop order

Research Setting



- Ascension St. Vincent's
 - Riverside
 - 528-bed non-profit, adult, community, teaching hospital
 - Southside
 - 313-bed non-profit, adult, community hospital
 - Clay County
 - 104-bed non-profit, adult, community hospital

Study Design

- IRB-approved, multi-centered, retrospective, non-inferiority, observational chart review
- Six-month periods were evaluated

Subject Selection

- Inclusion criteria
 - 18 years of age or older
 - Administered antibiotics for at least 48 hours
- Exclusion criteria
 - Vancomycin or aminoglycoside monotherapy
 - Surgical prophylaxis
 - Postpartum
 - Pregnant
 - Incarcerated

Clinical cure rates of patients placed on antibiotics before and after initiation of a 5-day ASO policy

- Clinical cure rate:
 - Resolution of signs and symptoms of infection:
 - Temp $< 38^{\circ}\text{C}$ and $> 36^{\circ}\text{C}$
 - WBC between 4,000 cells/ mm^3 and 12,000 cells/ mm^3
 - No additional antibacterial or surgical therapy
 - And:
 - No positive repeat cultures
 - No clinical documentation suggesting persistent infection

Secondary Outcomes

Hospital length
of stay

Inpatient
mortality

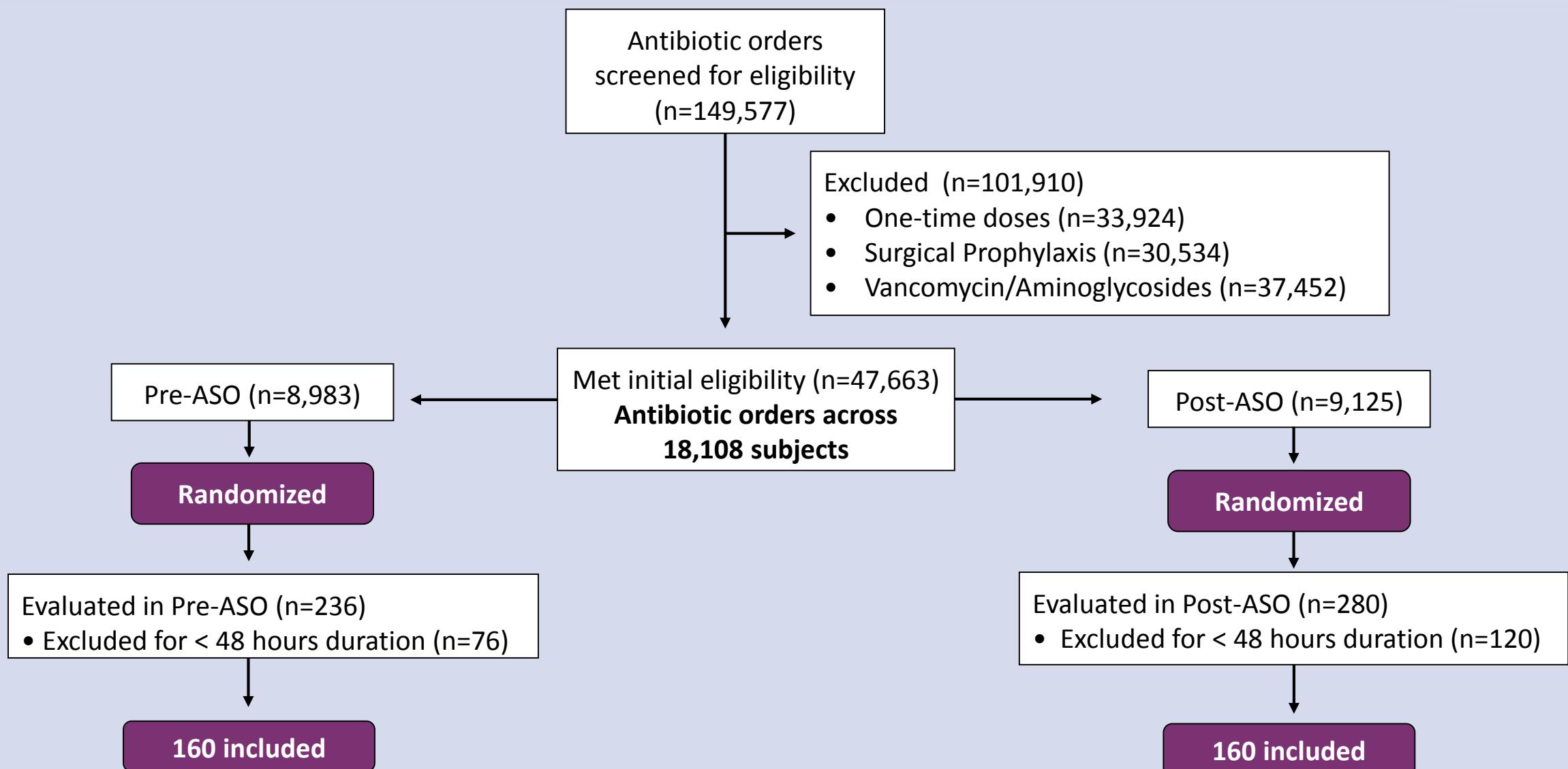
30-day
readmission

Inappropriate
discontinuation
of antibiotics

Duration of
antibiotics

Data Collection

- Demographics
- Comorbidities
- Length of stay
- Infection type
- Microbiological reports
- Prior 30-day antibiotic use
- Antibiotics prescribed on discharge
- Antibiotic therapy:
 - Drug
 - Route
 - Dose
 - Duration


Power calculation

- Average clinical cure rate of 90%
- One-sided non-inferiority margin of 10%
- Power: 80%
- Alpha: 0.05
- Total of 160 subjects in each group

Inferential statistics

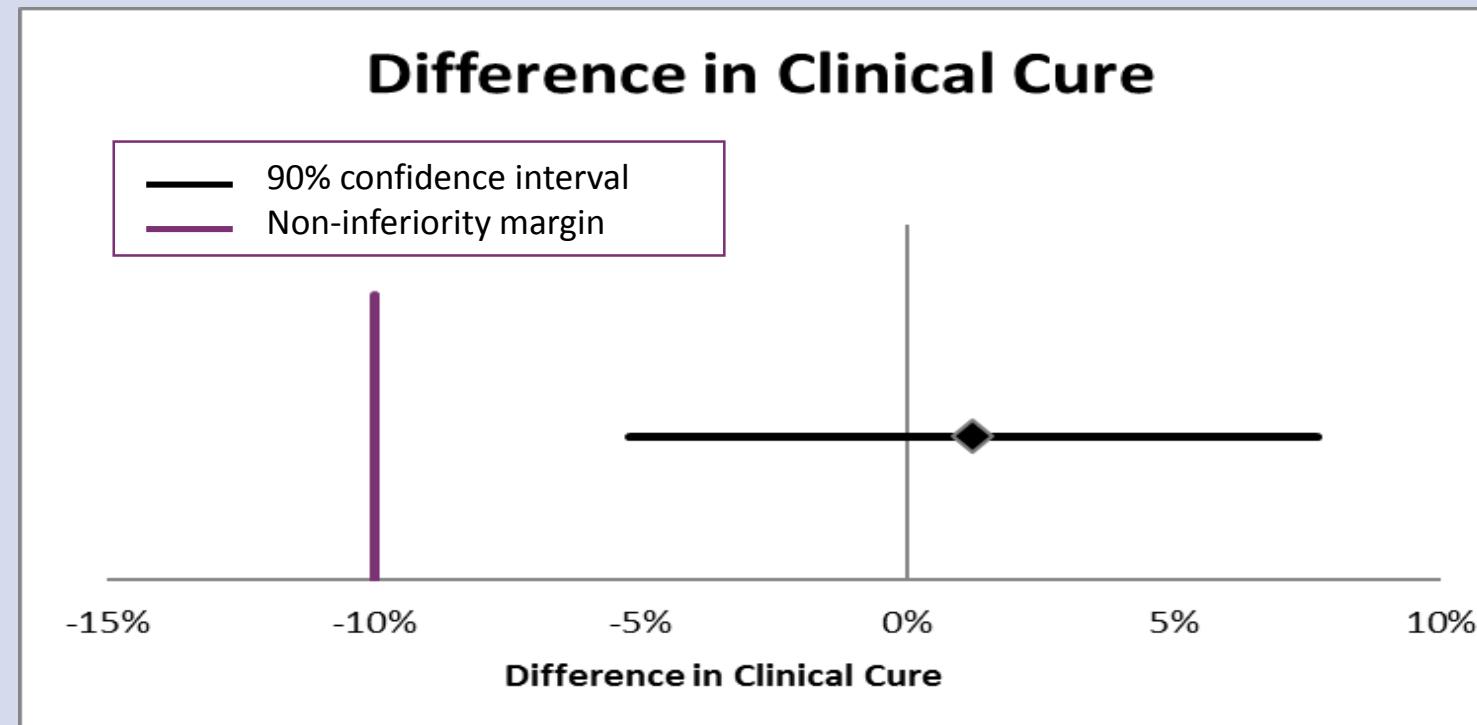
- Continuous: Student's t-test & Mann-Whitney U
- Nominal: Chi-squared & Fisher's exact

Subject Selection

Baseline Demographics

Characteristic	Pre-ASO (n=160)	Post-ASO (n=160)	p-value
Age, yr	66 (64-69)	64 (61-67)	0.425
Female, n (%)	93 (58)	74 (46)	0.034
Height, cm	168 (166-170)	170 (168-171)	0.179
Weight, kg	82 (78-85)	83 (79-87)	0.787
Race, n (%)			
White	124 (78)	108 (68)	0.187
African American	33 (21)	44 (28)	
Other	3 (2)	8 (5)	

median (IQR) unless otherwise noted


Baseline Demographics

Characteristic	Pre-ASO (n=160)	Post-ASO (n=160)	p-value
WBC Count, cells/m ³	14 (13-15)	13 (12-14)	0.650
Positive cultures, n (%)	76 (48)	73 (46)	0.519
Antibiotic use (<30 days), n (%)	27 (17)	43 (27)	0.031
Discharge antibiotics, n (%)	89 (56)	87 (54)	0.822
Comorbidities, n (%)			
COPD	36 (23)	25 (16)	0.154
Renal insufficiency	18 (11)	12 (8)	0.338
Malignancy	22 (14)	9 (6)	0.022
Cirrhosis	3 (2)	1 (1)	0.623
Diabetes mellitus	28 (18)	26 (16)	0.881
Immunocompromised	8 (5)	8 (5)	1

Immunocompromised = Organ transplant, tuberculosis, HIV, inflammatory bowel diseases, systemic lupus erythematosus

Primary Outcome Results

	Pre-ASO (n=160)	Post-ASO (n=160)	p-value
Clinical cure, n (%)	138 (86.3)	140 (87.5)	0.002 Farrington-Manning method for non-inferiority

Secondary Outcome Results

Antibiotic duration
days, (IQR)

Pre:
5.5 (2.95-6.25)

Post:
4.8 (2.97-5.3)

p=0.184

30-day readmission
n, (%)

Pre:
31 (19)

Post:
24 (15)

p=0.362

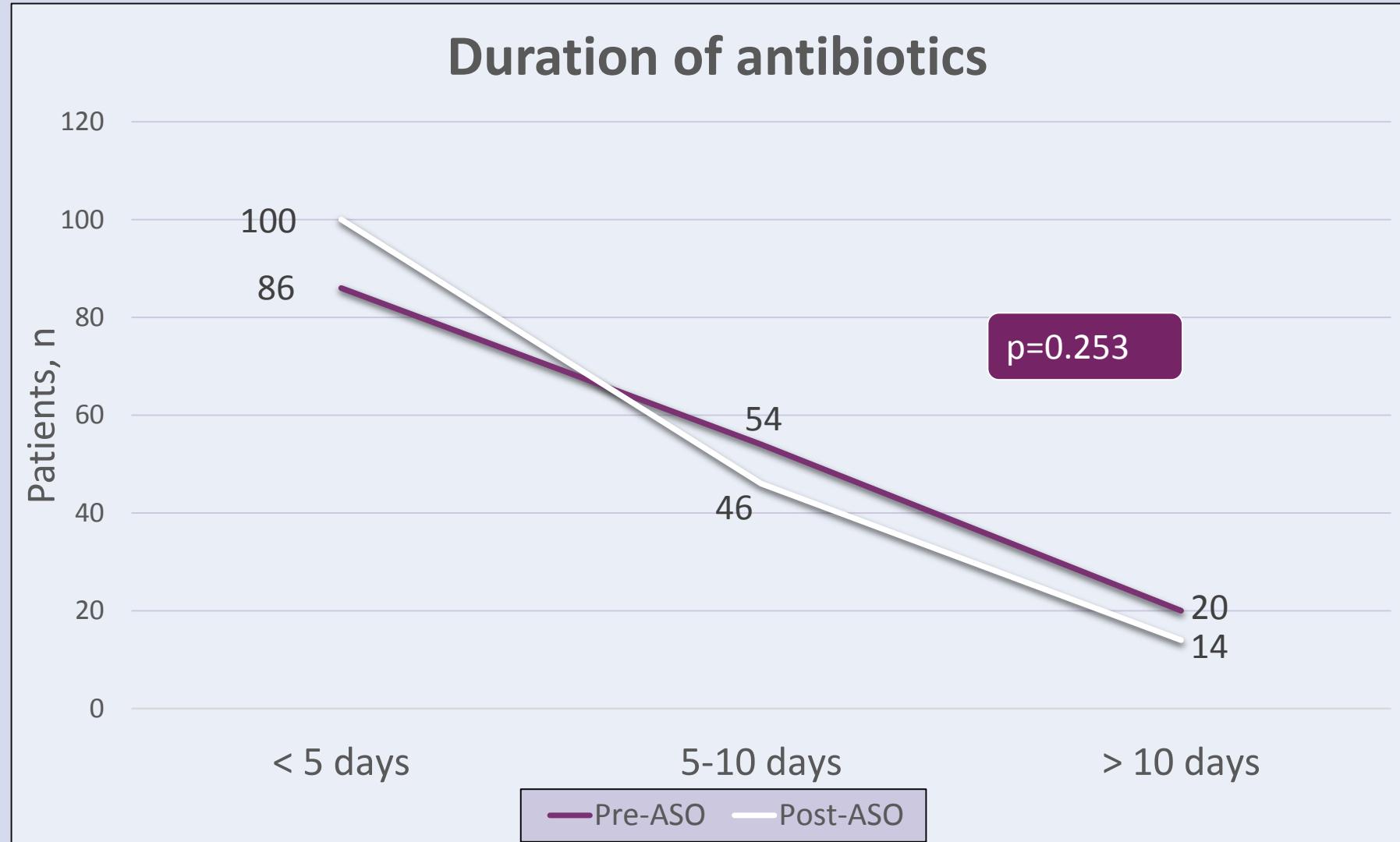
Length of stay
days, (IQR)

Pre:
10.5 (8.7-12.3)

Post:
9.5 (8.2-10.7)

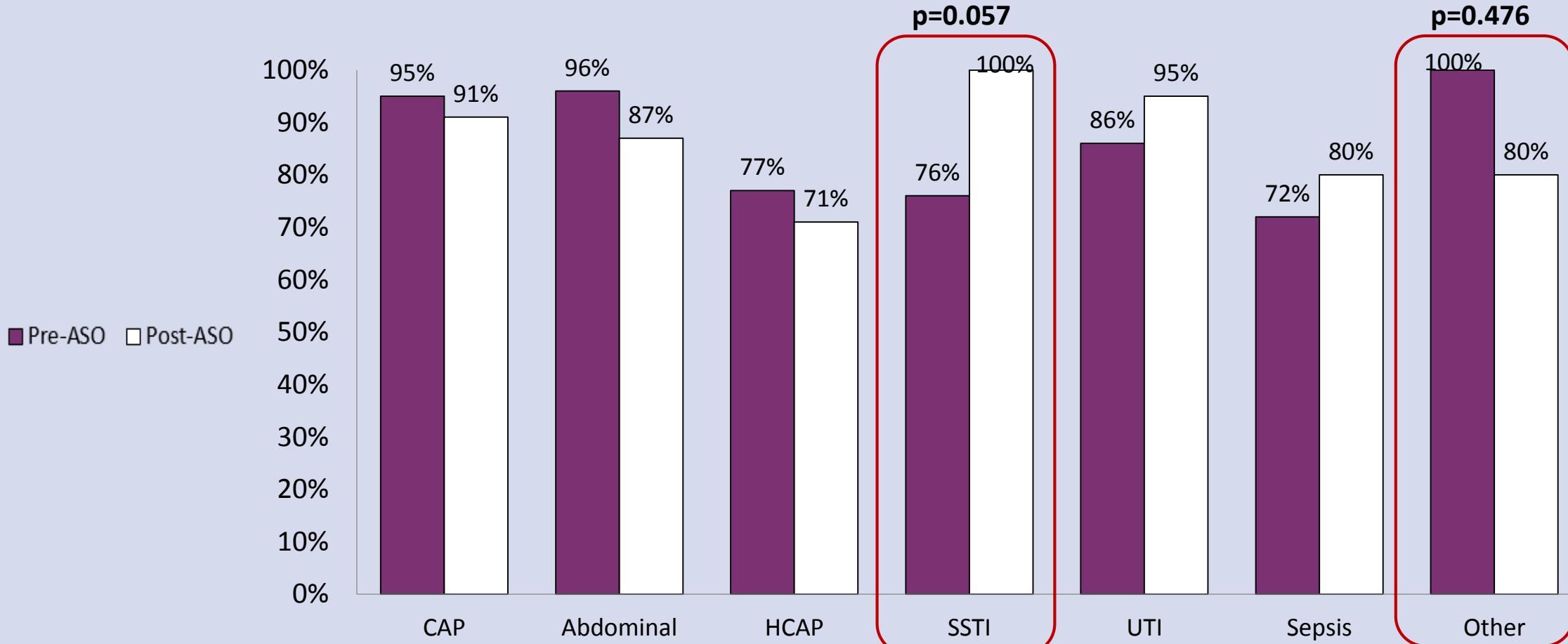
p=0.980

Mortality
n, (%)


Pre:
3 (2)

Post:
6 (4)

p=0.502


One inappropriate discontinuation in the post-ASO group

Subgroup Analysis

Subgroup Analysis

Clinical cure rates between groups

CAP = Community acquired pneumonia; HCAP = Healthcare-acquired pneumonia; SSTI = Skin and soft tissue infection; UTI = Urinary tract infection; Other = Sinusitis, meningitis, COPD exacerbation, bacteremia, fungal

Discussion

- Met non-inferiority for clinical cure
- Numerical decrease in antibiotic duration
- No difference between subgroups in regards to clinical cure
- Inappropriate discontinuation did not affect clinical outcome
 - Order was restarted within 24 hours following stop time

Study Limitations

- Retrospective cohort study
 - Relied on nursing documentation of antibiotics
 - Heterogeneity between groups
 - Female sex/prior antibiotic use/malignancy
- Seasonal differences between groups
 - December-May (Pre-ASO) vs September-March (Post-ASO)
- Other antibiotic stewardship initiatives during study period

Conclusion

- First study to demonstrate antibiotic efficacy in conjunction with ASO policies
 - Supports clinical safety of antibiotic stop orders
 - Minimal risk of premature antibiotic discontinuation
- ASOs offer potential for reduced antibiotic exposure and costs

Assessment Question

Which of the following is NOT a goal of an automatic stop order policy?

- A. Encourage active reassessment of the patient on a daily basis
- B. Evaluate the need for continuation of treatment
- C. Minimize antibiotic use
- D. Improve rates of clinical cure

Acknowledgements

Calvin Tucker, PharmD, BCPS, BCCCP

Bryan Allen, PharmD, BCPS, BCCCP

Luke Miller, PharmD, BCPS

Megan Keese, PharmD, BCPS

Abdel Bello, PharmD

Ashley Miller, PharmD

Michele Loudy, PharmD, BCPS

Impact of implementing an automatic 5-day antimicrobial stop order policy on antibiotic utilization

Matthew Vickers, PharmD
Ascension St. Vincent's
PGY1 Pharmacy Resident
matthew.vickers@ascension.org

