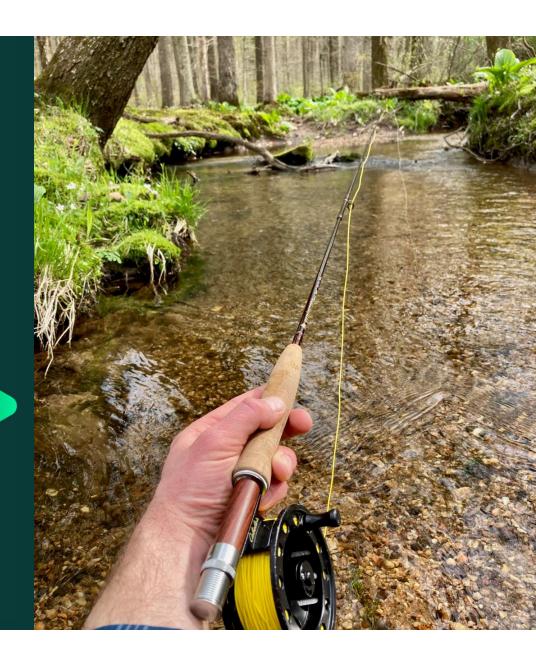


Utilizing Natural Channel Design Principles for Infrastructure Protection: A Resilient Approach to Reducing Utility Infrastructure Risk in Stream Environments


Presented by: Cory Trego

October 9, 2025

GFT

Utilizing Natural Channel Design Principles for Infrastructure Protection: A Resilient Approach to Reducing Utility Infrastructure Risk in Stream Environments

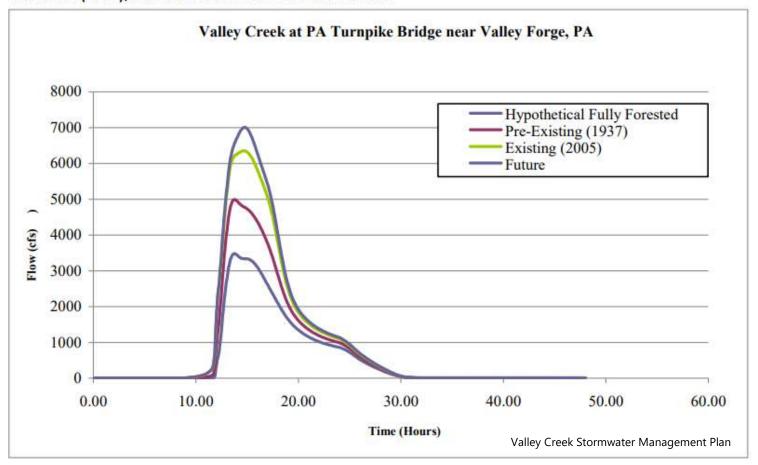
October 9, 2025

Presentation Outline

- Causes of Stream Instability and the Impact on Utility Infrastructure
- Overview of Natural Channel Design (NCD) Principles
- Benefits of Using a NCD Approach for Utility Protection
- Project Spotlights
- Practice Insights

Factors Influencing Stream Stability

A stable natural stream system supports a consistent channel morphology (slope, width, and depth), neither aggrades nor degrades, has good floodplain connectivity, diverse habitat features, balanced sediment loads, and is resilient to disturbance



Streams reflect the conditions of the watersheds through which they flow

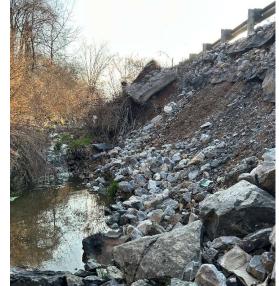
- Urbanized or developed watersheds are characterized by....
 - Increased stormwater runoff
 - "Flashy flows" and higher peak flows
 - Streambank erosion and channel instability

FIGURE 3-1 100 – YEAR HYDROGRAPH COMPARISON – HYPOTHETICAL FULLY FORESTED, PRE-EXISTING (1937), EXISTING (2005), AND FUTURE BUILD-OUT CONDITION

8 Ingenuity That Shapes Lives[™]

Channel Instability Increases Risks to Adjacent Utilities

- ➤ Channel downcutting and lateral migration can often result in exposure of utility infrastructure
- Increased vulnerability during flood events



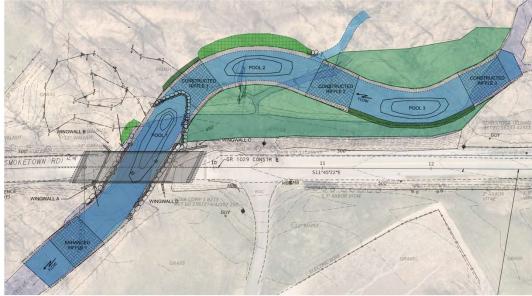
Effectiveness of traditional bank armoring is limited

- Protect a limited area and can cause downstream erosion
- Does not reduce channel velocities or shear stress
- Typically requires ongoing maintenance
- Does not improve floodplain connectivity or improve flood water retention
- Little benefit to aquatic habitat

Natural Channel Design Principles

Natural Channel Design: A stream restoration method that reconstructs degraded watercourses to mimic their stable, natural forms, balancing hydraulic, geomorphic, and ecological functions

Natural Channel Design Principles


- Design parameters derived from stable reference reaches
- Bankfull flow (channel forming discharge) used to establish channel width, depth, and cross sectional area

Natural Channel Design Principles

- Mimics reference planform geometry: meander wavelength, riffle-pool spacing, slope, radius of curvature, sinuosity, etc.
- Ensures sediment transport competence
- Heavier reliance on utilizing natural materials and bioengineering practices

Benefits of Using Natural Channel Design

Long term stream stability

NCD addresses the root causes of channel instability to offer longterm infrastructure protection

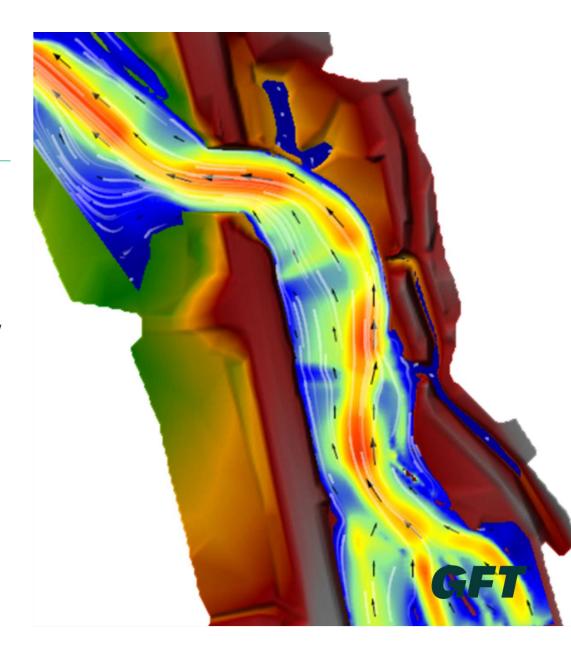
Considerations

Case Study: Gulph Creek

Case Study: Gulph Creek

Case Study: Coopers Branch

Case Study: Tacony Creek


NCD Practice Insights

- Develop a thorough understanding of the project watershed
- ➤ Evaluate the size, scope, and access required to ensure a long-term solution to addressing the problem area
- Time of year is critical: instream restrictions & planting success
- Contractor selection: finesse can be required for complicated projects

Stream Design Science Continues to Improve at a Rapid Pace

- Significant improvements in both restoration techniques and modeling science over the past few decades
- Detailed 2D model development allows you to visualize iterations under various storm events

Closing Take Aways

- > Stream channels in urban and suburban environments are highly susceptible to hydraulic conditions that result in channel instability putting adjacent utility infrastructure at risk.
- Natural Channel Design principles allow for a more holistic approach that addresses the root causes of stream instability
- NCD principles can result in long-term utility infrastructure protection while improving channel hydraulics, increasing flood attenuation, and providing ecological uplift
- > Stream restoration science has rapidly evolved over the past few decades and offers a more resilient and dynamic approach to utility protection in the face of increasing storm and precipitation intensity.

Thank You! - Questions?

CORY TREGO, PROJECT ENVIRONMENTAL SCIENTIST

1010 ADAMS AVENUE AUDUBON, PA

P: 484.587.5268

E: CTREGO@GFTINC.COM