





# A Dive into PFAS Pilot Studies

Removing PFAS from Four Surface Water Plants Throughout Pennsylvania

Lori Kappen, P.E. - Gannett Fleming TranSystems Bruce Brubaker, P.E. - PAWC

## Agenda

- Introduction
- Information about Facilities
- DEP Piloting Guidance
- Pilot Design
- Observations
- Lessons Learned



### **About American Water**

Largest regulated water and wastewater company in the United States

- Founded in 1886, American Water (NYSE: AWK) has served customers and communities for more than 135 years.
- We serve a broad national footprint and maintain a strong local presence.
- We treat and deliver more than one billion gallons of water daily.
- We provide services to more than 14 million people with regulated operations in 14 states and on 18 military installations.
- We employ 6,700 talented professionals who leverage their significant expertise and the company's national size and scale to achieve excellent outcomes for the benefit of customers, employees, investors and other stakeholders.



American Water corporate headquarters located in Camden, N.J.



### **About Pennsylvania American Water**

Pennsylvania American Water is the largest regulated water and wastewater service provider in the Commonwealth.

Our approximately **1,170 employees** serve:

- Approx. 2.4 million people
  in 418 communities in 37 counties
  (19% of the population)
- 687,600 water customers
- 114,900 wastewater customers





Water & Wastewater Service



### **Pennsylvania American Water Operations**

#### Our assets at a glance:

- 37 water treatment plants (Average daily delivery: 192 MG)
- **27** wastewater treatment plants (Total daily capacity: 75 MG)
- 12,080 miles of transmission, distribution and collection mains and pipes (Water main: 10,380 miles / Wastewater main: 1,690 miles)
- 95 active groundwater wells
- 465 water and wastewater pumping stations (Water pump stations: 302 / Wastewater lift stations: 163)
- 292 treated water storage facilities
- **52** dams





## Background



### **Project Drivers**

- EPA/DEP Regulations
- PFOA/PFOS near or above MCLs
- Media performance information is limited for surface water
- Evaluate full scale treatment alternatives to meeting U.S. EPA regulations
- DEP requires pilot testing
  - 9-month study or until breakthrough has occurred (whichever is longer)





# Facilities Information

| WTP           | Location      | Plant<br>Capacity | Source                         |
|---------------|---------------|-------------------|--------------------------------|
| Silver Spring | South Central | 8 MGD             | Conodoguinet                   |
| Hershey       | South Central | 11 MGD            | Swatara & Manada               |
| Ellwood       | Western       | 8 MGD             | Connoquenessing & Beaver River |
| Norristown    | Southeast     | 18 MGD            | Schuylkill                     |



### **Raw Water Quality**

| Parameter       | Silver Spring | Hershey | Ellwood      | Norristown      |
|-----------------|---------------|---------|--------------|-----------------|
| TOC, mg/L       | 1.4           | 1.4     | 3.8          | 2.9             |
| Coagulant       | Ferric        | Ferric  | Alum         | Ferric          |
| Hardness        | 190           | 112     | 171BR, 133CC | 139 (Plant Eff) |
| Iron, mg/L      | 0.01          | 0.020   | 0.01         | 0.26            |
| Manganese, mg/L | 0.02          | 0.021   | 0.02         | 0.16            |
| рН              | 7.7           | 7.4     | 7.2          | 7.8             |

#### Notes:

- The above numbers reflect average values
- BR Beaver River, CC Connoquenessing Creek



### **Project Approach**

- Test at least two GAC
- Test at least one resin
- Test at least one alternate media (Cetco Fluorosorbs)
- 9-month duration
- Goal to have 80% breakthrough in approximately 6 months
- Provide information needed for full scale design of a PFAS treatment system



### **Selected Media**

|                   | Silver Spring           | Hershey                      | Ellwood                 | Norristown                |
|-------------------|-------------------------|------------------------------|-------------------------|---------------------------|
| GAC1              | Calgon Filtrasorb 400   | Calgon Filtrasorb 400        | Calgon Filtrasorb 400   | Calgon Filtrasorb 400     |
| GAC2              | Evoqua Ultracarb 1240LD | Evoqua Ultracarb 1240LD      | Evoqua Ultracarb 1240LD | Evoqua Ultracarb 1240LD   |
| IX1               | Calgon Calres 2301      | Calgon Calres 2301           | Calgon Calres 2301      | Calgon Calres 2301        |
| IX2               | Dupont PSR2 Plus        | Dupont PSR2 Plus             | Dupont PSR2 Plus        | Dupont PSR2 Plus          |
| IX3/<br>Alternate | Purolite PFA694EBF      | Lanxess Lewatit TP 108<br>DW | Cetco Fluorosorb 400    | Lanxess Lewatit TP 108 DW |
| Alternate         | Cetco Fluorosorb 200    | Cetco Fluorosorb 200         | Cetco Fluorosorb 200    | Cetco Fluorosorb 200      |



## **Permitting**

**DEP Guidance** 



### **Media Selection**

- Test at least three media
- Consider water quality:
  - PFAS
  - Anions, TDS
  - Metals
  - VOCs, SOCs, NOM
  - Turbidity
  - Hardness, alkalinity, pH, temperature
  - Emerging contaminants
  - Pre-treatment chemicals





### **PADEP Guidance: PFAS Pilot Sizing**

### **Ion Exchange Resin**

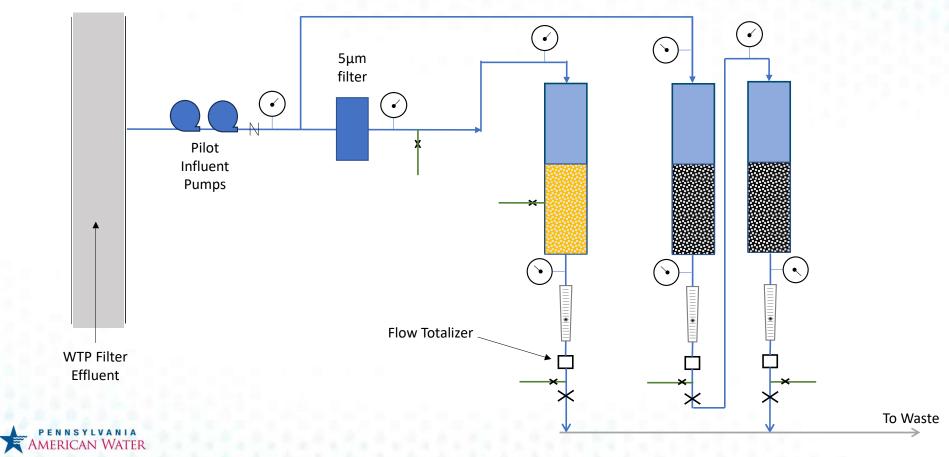
- Minimum 3-inch diameter
- EBCT >= 2.5 minutes
- HLR <=12 gpm/sf
- Media Depth >= 3 ft

### **GAC**

- Minimum 3-inch diameter
- EBCT >= 10 minutes
- HLR <=6 gpm/sf</li>
- Media Depth >= 3 ft
- Initial backwash
- 30% expansion



# Pilot Design & Operation




### **Pilot System Design Example**

| Parameter                  | Full-Scale Concept |                          | Pilot System      |                          |
|----------------------------|--------------------|--------------------------|-------------------|--------------------------|
|                            | GAC                | IX Resins/<br>Fluorosorb | GAC               | IX Resins/<br>Fluorosorb |
| Vessel Dia. (ft.)          | 12                 | 12                       | 0.33              | 0.33                     |
| Bed Depth (ft.)            | 12.4               | 4.1                      | 6 (3/column)      | 2.5                      |
| Bed Volume (cf)            | 1,400              | 460                      | 0.26 x 2          | 0.22                     |
| Flow Rate (gpm)            | 7,640              | 7,640                    | 0.84              | 1.2                      |
| HLR (gpm/sf)               | <mark>9.65</mark>  | <mark>13.5</mark>        | <mark>9.65</mark> | <mark>13.5</mark>        |
| EBCT (min)                 | <mark>9.6</mark>   | <mark>2.25</mark>        | 2.3 x 2           | <mark>1.4</mark>         |
| Total Bed Volumes / 6 mos. |                    |                          | 56,500            | 190,000                  |



### **Example Schematic**



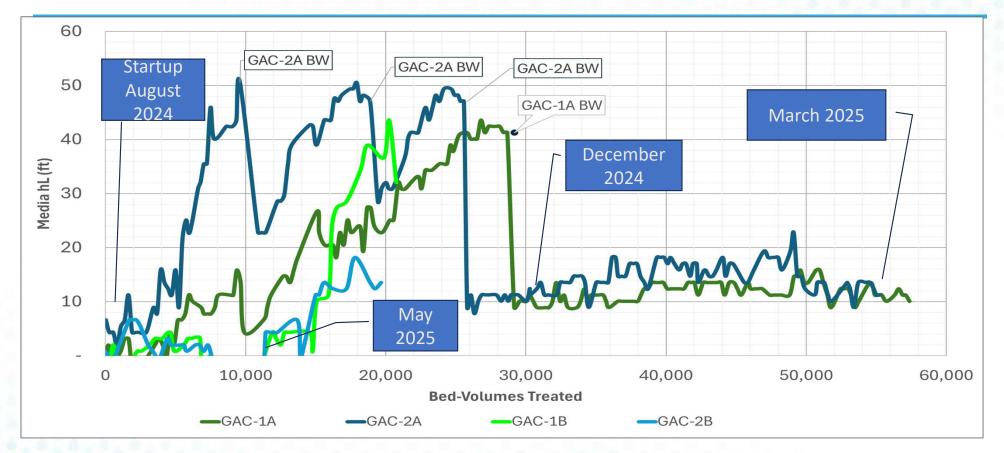






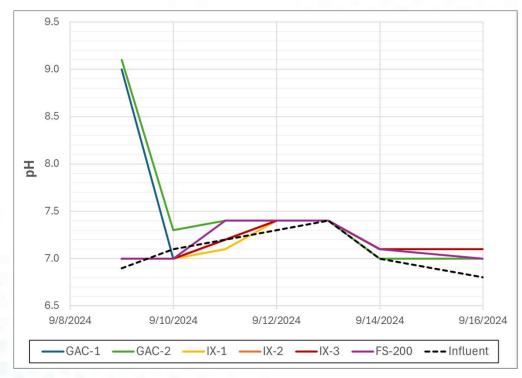
### **Pilot Operation**

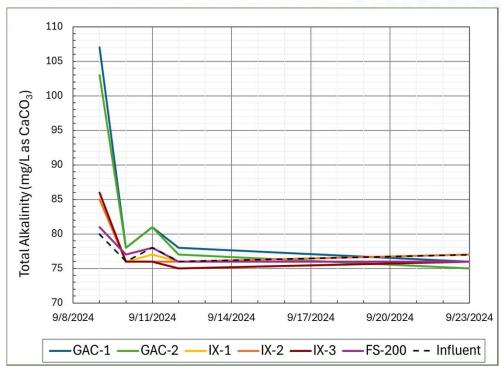
- Pressure each column influent/effluent
  - Headloss calculations
- Flow Rate
  - Controlled by downstream rotometer for each column
  - Adjust rotomoter as needed to maintain target flow
    - \*Backwashing required when headloss rises > 30 to 35 ft +/-
- Total Flow
  - · Record daily
  - Use to calculate bed volume treated
    - \*BVs = flow treated (gal) / bed volume (gal)
- Pre-Filtration
  - 5-micron filter used upstream of IX Resins to remove solids
  - Not required for GAC and Fluorosorb
  - Replace as headloss increases
- Sampling Influent, Mid-point, and Effluent




## **Monitoring**

| Parameter                           | Why?                                                                             |
|-------------------------------------|----------------------------------------------------------------------------------|
| PFAS                                | Monitor load on media. Monitor breakthrough. Regulatory compliance.              |
| Anions (Nitrate, Sulfate, Chloride) | Media impact on treated water quality. Impact of anions on performance (resins). |
| Total organic carbon (TOC)          | Media impact on treated water quality. TOC impacts performance (esp. GAC)        |
| pH, Alkalinity                      | Initial changes to effluent quality. Can impact adsorption performance.          |
| Fe, Mn, Al                          | Potential for media fouling.                                                     |
| Turbidity                           | Potential for media fouling, headloss accumulation                               |
| Free chlorine                       | Resins are sensitive to oxidants                                                 |



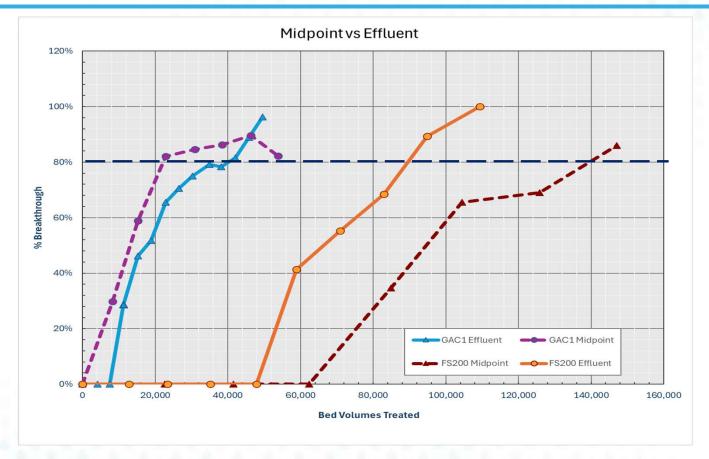


### **Headloss**





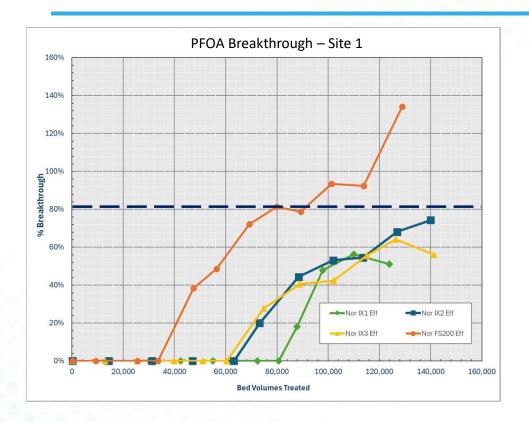
### **GAC vs IX Startup Stabilization Period**

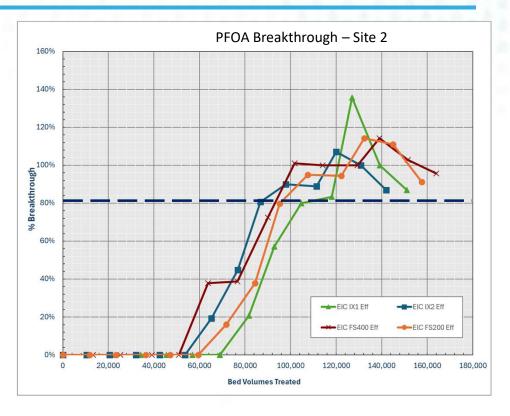






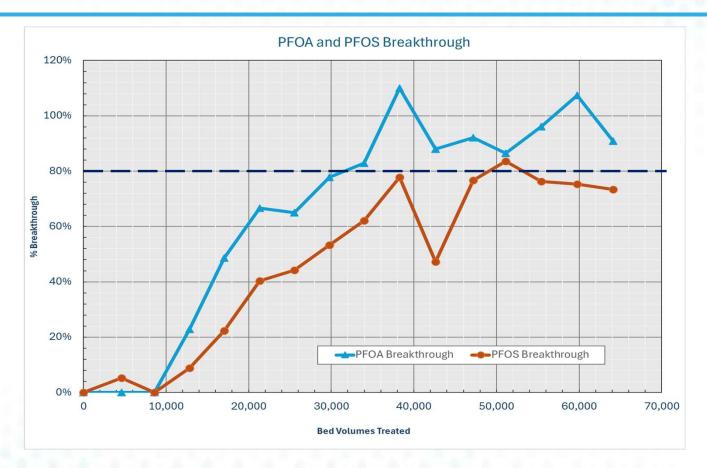

## **Observations**





### **Midpoint and Effluent Breakthrough**

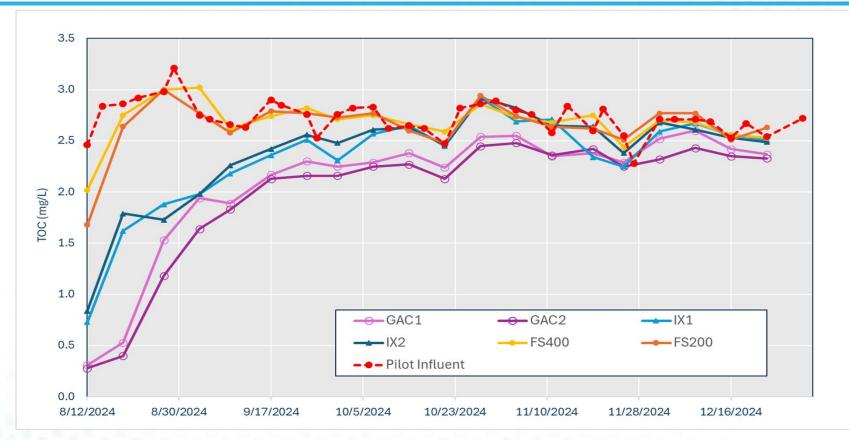





### **Source Water Effects on Breakthrough**








### **PFOA – Determines Bed Life**





### **Performance Comparison – TOC Removal**





## **Takeaways**



### **Lessons Learned – Pilot Setup and Installation**

- Pilot supply headloss
- Pre-filtration
  - Nominal versus absolute
  - Replicate full scale implementation
  - Consider pre-filter and PFAS bed life
- Fouling and backwashing
- Pilot unit placement
  - Height constraints
  - Place in location that can get wet
  - Floor drain





### **Lessons Learned – Full Scale Design**

- Media selection
  - GAC selected
- Loading rates
  - Bed life
- Fouling considerations
  - Design maximum DP
  - Backwash and Waste Handling
- Initial Water Quality Changes
  - Waste Handling

|                                | 9.2 gpm/sf<br>Design HLR | 6.1 gpm/sf<br>Design HLR |
|--------------------------------|--------------------------|--------------------------|
| Number of Trains               | 12                       | 18                       |
| Average HLR (gpm/sf)           | 5.9                      | 3.9                      |
| Average EBCT (min)             | 16                       | 24                       |
| Bed Life (days)                | 440                      | 660                      |
| Bed Replacements/Year          | 10                       | 10                       |
| Backwash Frequency (days/unit) | 70                       | 100                      |
| Backwashes per Year            | 96                       | 60                       |



## Questions?



