
1

# Presentation Outline What is a Tracer Study? Goal of Tracer Study Why do we need Tracer Studies? Development of Tracer Study Protocol Preparation is Key Execution of the Tracer Test Results and Report

# What is a Tracer Study?

- A test performed on a disinfection clearwell or contact tank to determine its baffling factor (BF).
- Results used to calculate the CT required for treatment operation
  - CT the product of disinfectant concentration (C) and time
     (T) the disinfectant remains in contact with the water; used
     to measure the effectiveness of disinfection
- > Test Consists of:
  - Addition of a known quantity of tracer chemical
  - Tracking and monitoring the tracer in one or more segments of a treatment process
- > Constant and uninterrupted flow rate required

3 Ingenuity That Shapes Lives



3

### **Goal of Tracer Studies**

- Determine contact time (T<sub>10</sub>) for one or more segments of the treatment process
- $\blacktriangleright$  What is  $T_{10}$ ?
  - The time it takes for 10% of the tracer to pass through the segment being evaluated
  - The basis for determination of baffling factor/detention efficiency

 $T_{10} = T \times BF$ 

T = Theoretical Detention Time (V/Q)

V = Volume

Q = Flowrate

BF = Baffling Factor (0.0 - 1.0)

4 Ingenuity That Shapes Lives\*

GFT

### **Goal of Tracer Studies**

- What is Baffling Factor/Detention Efficiency?
  - Indicates the efficiency of water flow through a tank
  - Effective baffling optimizes tank design, ensures adequate mixing, and minimizes short-circuiting
  - Baffling factor closer to 1.0
    - Well distributed flow
    - Effective contact time between water and chemicals
  - Lower baffling factor suggests poor mixing, short-circuiting, inefficient contact time.

 $T_{10} = T \times BF$ 

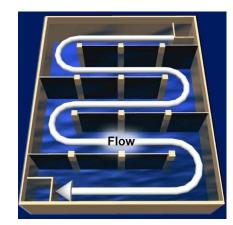
T = Theoretical Detention Time (V/Q)

V = Volume

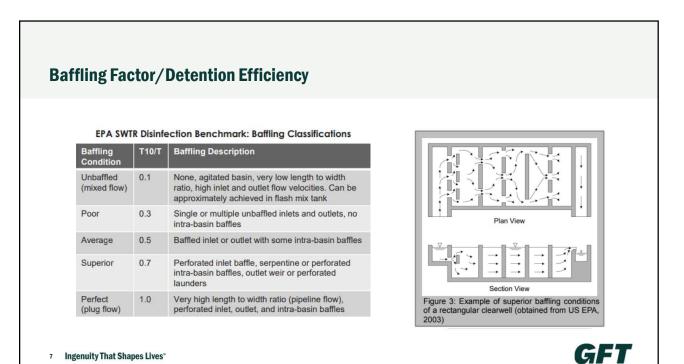
Q = Flowrate

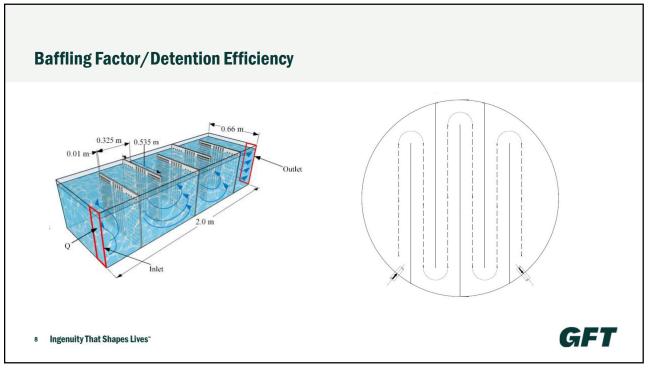
BF = Baffling Factor (0.0 - 1.0)

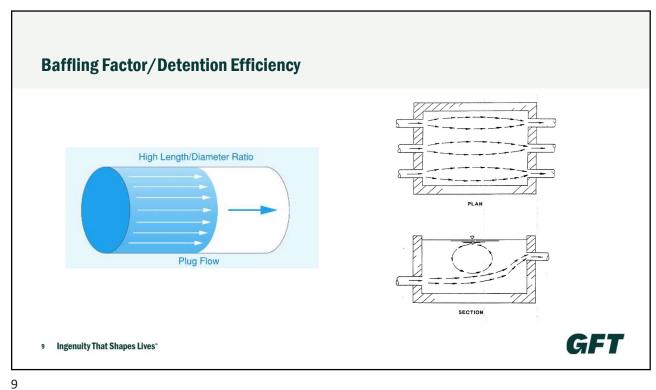
5 Ingenuity That Shapes Lives


**GFT** 

5


# **Baffling Factor/Detention Efficiency**





6 Ingenuity That Shapes Lives



**GFT** 







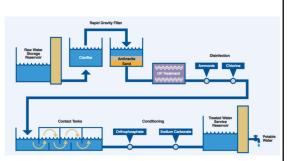
## Why do we need Tracer Studies?

- > Ensure the treatment process is as efficient as possible
- Understand the impact of flow rates and characteristics
- Ensure Regulatory Compliance
  - Achieve required log-reductions for Giardia, viruses, and/or Cryptosporidium
    - Log-inactivation calcs are impacted by pH, temperature, Cl<sub>2</sub> residual, and <u>Baffling Factor</u>
- Minimize/manage DBPs
  - Can't just increase disinfectant concentration
- Often required as part of PA DEP Filter Plant Performance Evaluation (FPPE)
- > Often a Permit Condition to validate basis of design for new or upgraded facilities
- 10 Ingenuity That Shapes Lives

GFT

## **Development of Tracer Study Protocol**

- Tracer Chemical (Salt; Fluoride pros/cons)
- Operating Conditions for Test(s)
  - Flow rate (at least 91% of Max. Q if only running at one Q)
  - Clearwell level
  - Plant conditions open/closed valves
- Test Type Step-dose vs. Slug Dose
- Target Tracer Concentration Background sampling for tracer concentration
  - Concentration adequate to clearly measure T<sub>10</sub> (consider equipment and/or lab MDL)
- > Tracer Injection Point
  - As close as possible to chlorine injection location; good mixing
- Sampling Location and Frequency
  - Monitor end point of segment being evaluated
  - Grab samples with hand-held instrument; continuous measuring device; grab samples to lab
- Regulatory Approval Requirements (can vary by state)
- 1: Ingenuity That Shapes Lives




11

## **Preparation for the Tracer Test**

- > Site Visit
  - Meet with Operators review treatment process, test protocol
    - Potential impacts of other chemicals
  - Identify injection, monitoring, and sample points
    - Existing taps in place? Fittings/tubing needed?
  - Adequate space for tracer equipment setup
  - Distance from injection/monitoring pts. to sampling pts.
  - Anything to be isolated during test?
    - Valve exercising or evaluation needed?
  - Power needed/available
    - Tracer feed pump
    - Charging of equipment





GFT

### **Preparation for the Tracer Test**


- Anticipated length of test
  - Operator presence/availability throughout test
- Ability to maintain required flow rate and clearwell level throughout test
  - May need to schedule test during period of high demand
  - Lower finished water storage tank(s) in advance
- Public Notification required?
- Calculate, calculate, calculate
  - Tracer quantity/volume required (mixing tank; access to plant water)
  - Anticipated T<sub>10</sub>
- Equipment Calibration know your equipment
- Supply list Sample bottles, DI water, labels, sharpies, clipboard, extension cords, gloves, etc.
- > Set up the day before whenever possible!
- 13 Ingenuity That Shapes Lives



13

### **Execution of the Tracer Test**

- Minimum of two people needed
- Verify with Operators:
  - SCADA can be used for flow rate and clearwell level data
  - Operating conditions (flow, clearwell level, valve status)
- > Synchronize timing devices
- Monitor background tracer concentration at least 30 minutes prior to start
- Sampling frequency
  - Most frequent at startup and near  $T_{10}$ , immediately following  $T_{10}$
  - Grab samples for backup, even if using continuous monitoring equipment
  - Consider calibration verification during test
- Manually record results for backup
- Run test to 100% of tracer concentration, if feasible
- 14 Ingenuity That Shapes Lives



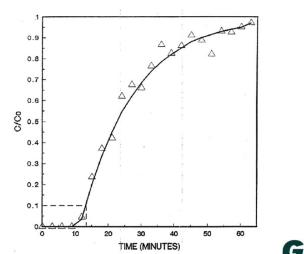


# **What Could Possibly Go Wrong?**

- Equipment/Instrument Issues
  - Instrument Calibration
  - Batteries
  - Probe returning unrealistic results
  - Probes measuring slightly differently
  - Pump, tubing, fittings, etc.
- Inadequate Sampling
  - Inadequate frequency
  - Inappropriate timing (too early/too late)

- Other chemicals or parameters impact tracer concentration
  - pH
  - Temperature
- Operational Issues
  - Changes in plant flowrate/clearwell level
  - Changes in tracer injection
  - Leaking valves
- > Tracer solution mixing/strength
  - Dry chemical difficult to dissolve

15 Ingenuity That Shapes Lives


**GFT** 

15

# **Analysis of Results**

- Sampling Results
  - Migration of data from instruments
  - Modification of data (if necessary)
  - Lab analysis of grab samples
  - Review of SCADA data
- Analysis of Data
  - Plotting of Data
  - Comparison of instrument sampling and lab analysis
  - Determination of T<sub>10</sub>
  - Determination of BF

16 Ingenuity That Shapes Lives



GFT

## **Tracer Study Results and Report**

- ➤ Tracer Study Final Report Requirements
  - 1. Provide the complete set of results from the Tracer Study
  - 2. Provide schematic diagram of the disinfection segment(s) being analyzed showing where all monitoring took place during the study.
  - 3. Provide a list of the water levels and volumes of each disinfection segment being analyzed during the study.
  - 4. Provide the graphical analysis method calculations and results for  $T_{10}$  including  $C/C_0$  versus Time graph.

17 Ingenuity That Shapes Lives



17

