

PRESENTATION SUMMARY

Leachate Treatment Overview

Interdependency of WWTPs and Landfills

The PFAS Cycle

Reverse Osmosis Technology

Case Studies

LEACHATE MANAGEMENT

WWTP OPERATIONS

"When sewage...is sent to a wastewater treatment plant, the liquids are separated from the solids, producing a semi-solid, nutrient-rich product known as 'sewage sludge' or 'biosolids'." – EPA.gov

5

WWTP-LANDFILL RELATIONSHIPS

https://www.in.gov/idem/iee/files/lesson_where_trash.jpg

/annarborwastewatertreatmentplant.html

Wastewater treatment plants and landfills both receive and manage society's wastes.

<section-header>

LEACHATE & PFAS

Assumed influent concentrations and treatment goals for target PFAS for mixed MSW landfill leachate (all units in ng/L)

PFAS	Typical Concentrations ^[1]	High Concentrations ^[1]	
PFBA	950	2,600	
PFBS	FBS 250		
PFHxA	1,500	,500 4,000	
PFHxS	350	750	
PFOA	900	1,900	
PFOS	150	300	
6:2 FTS	150	350	
N-EtFOSAA	150	450	

^[1] Data from Lang et al.; 2017 data on 87 samples from 18 landfills across the U.S. Typical concentrations reflect the mean of 87 samples, and high concentrations reflect the 90th percentile of 87 samples. These target PFAS generally represented between 60% and 85% of the sum of PFAS analyzed. Values were rounded to the nearest 50 ng/L and two significant digits.

https://www.caymanchem.com/news/pfas-dilution-is-not-the-solution https://www.pca.state.mn.us/air-water-land-climate/pfas-studies-and-repor

PFAS IN PENI	NSYLVA	ANIA		
Maximum	Contam	inant Levels – Jan	uary 2023	
		MCLG (ng/L or ppt)	MCL (ng/L or ppt)	
	PFOA	8	14	
	PFOS	14	18	
Now supers	eded by E	PA MCLs	Pennsylvania Departm Environm	ent of nental Protection
ROCHEM	® AMERICAS		https://www.pa.gov/agencies/dep/programs- water/drinking-water-management/drinking-v	and-services/water/bureau-of-safe-drinking- water-regulations/pfas-mcl-rule.html

Slide 11

EP1 Include if time

Erica Peris, 2025-05-07T17:27:59.472

<section-header><section-header><image>

13

PFAS – WWTPs

Municipal WWTPs receive PFAS in influent via:

- Landfill leachate (if applicable)
- Industrial wastewater (if applicable)
- Residential wastes

PFAS in wastewater treatment

- Types/concentrations of PFAS vary
- Higher concentrations typical for WWTPs that receive industrial WW or leachate

Biosolids removal/fate

- PFAS accumulation in biosolids
- PFAS distribution in biosolids different than in WW
- High variability (attributed to sources and matrix sampling)

Landfills receive PFAS in waste via: Industrial wastes Residential wastes Biosolids from WWTPs PFAS released from landfill via: Landfill leachate Landfill gas (minor) Groundwater (unlined landfills) Landfills are the current "best practice" for removing PFAS for the second second

Landfills are the current "best practice" for removing PFAS from the environment.

ROCHEM® AMERICAS

PFAS – LANDFILL LEACHATE

EP1 **REVERSE OSMOSIS** Approximate Range of Separation Processes SEPARATION PROCESS MMF REVERSE AMMONI PFAS RELATIVE PARTICLE SIZE Na + Cl Y METALS FULVIC/HUMIC ACIDS PROTEINS BACTERIA 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 Particle Size Range (um) **Reverse osmosis will effectively remove >99% of all constituents** with molecular weight greater than 100, as well as ionic species. ROCHEM®

EP1 Add chart that shows PFAS

Erica Peris, 2025-05-07T17:30:22.420

EP1 0 See Pete's

Erica Peris, 2025-05-07T17:30:42.374

BENEFITS OF RO FOR LEACHATE TREATMENT

The inherent nature of RO as a separation process offers several significant advantages:

High rejection rates \rightarrow Large reduction in concentrations

Physical/chemical process \rightarrow More resistant to concentration swings

"Simpler" to Operate

- No biomass to maintain
- Mechanical system with limited chemistry
- Larger pool of operators (compared to biological)

Consolidated footprint

Rapid startup/deployment

ROCHEM®

Open feed channels minimize fouling and maximize cross flow velocity

- · Requires internal loops to maintain high velocity
- This allows for higher achievable recovery rates

EP1 unclear

Erica Peris, 2025-05-07T17:35:57.438

EP1 0 Pfas mass loading to wwtps - michigan Erica Peris, 2025-05-07T17:37:25.047

CASE STUDY: OHSL

Orchard Hill Sanitary Landfill

Berrien County, MI

Prior to 2011: Relied on evaporation and trucking to WWTPs

2011:

Following bench/pilot testing, installed 40,000 GPD RO system

NPDES permit issued with two outfalls

2015: Installed 2nd 40,000 GPD system with high pressure treatment (reduced residual volumes)

MULTIMEDIA FILTERS

HIGH PRESSURE SYSTEM

RO & LEACHATE - PFAS Rochem Systems have been operating for decades in US

Originally designed for removal of conventional wastewater constituents

- BOD/COD
- NH3
- TSS
- TDS
- Heavy Metals

Late 2010s → Increased scrutiny on PFAS in leachate

Sampling demonstrated effectiveness of PFAS removal using RO – specifically 2pass systems for >> 99% removal

TYPICAL LEACHATE TREATMENT RESULTS		
I Y PIGAL LEAGHAIE I KEALMENT KESULIS		

Parameter	Units	Leachate	Final Pass Effluent
Volumetric Flow	GPD	100,000	87,500
Total Dissolved Solids	mg/L	7,890	25
Total Suspended Solids	mg/L	90	ND
Biological Oxygen Demand	mg/L	1,560	36
Chemical Oxygen Demand	mg/L	4,670	29
Total Organic Carbon	mg/L	2,020	8
Ammonia-Nitrogen	mg/L	1,050	21
PFAS Compounds*	ng/L	44,130	ND

*USEPA Method 1633

ROCHEM[®] AMERICAS

EP1 Insert summary table

Erica Peris, 2025-05-07T17:58:56.971

QUESTIONS?

Erica Peris Rochem Americas, Inc. ericap@rochemamericas.com

Thank you!

ROCHEM[®] AMERICAS