

UPDATE

Utah's Hi-MOD Asphalt

December 17, 2025

Zoom Call

Utah Asphalt Pavement Association (UAPA)

Rick W Johnson
Executive Director

House Keeping Items

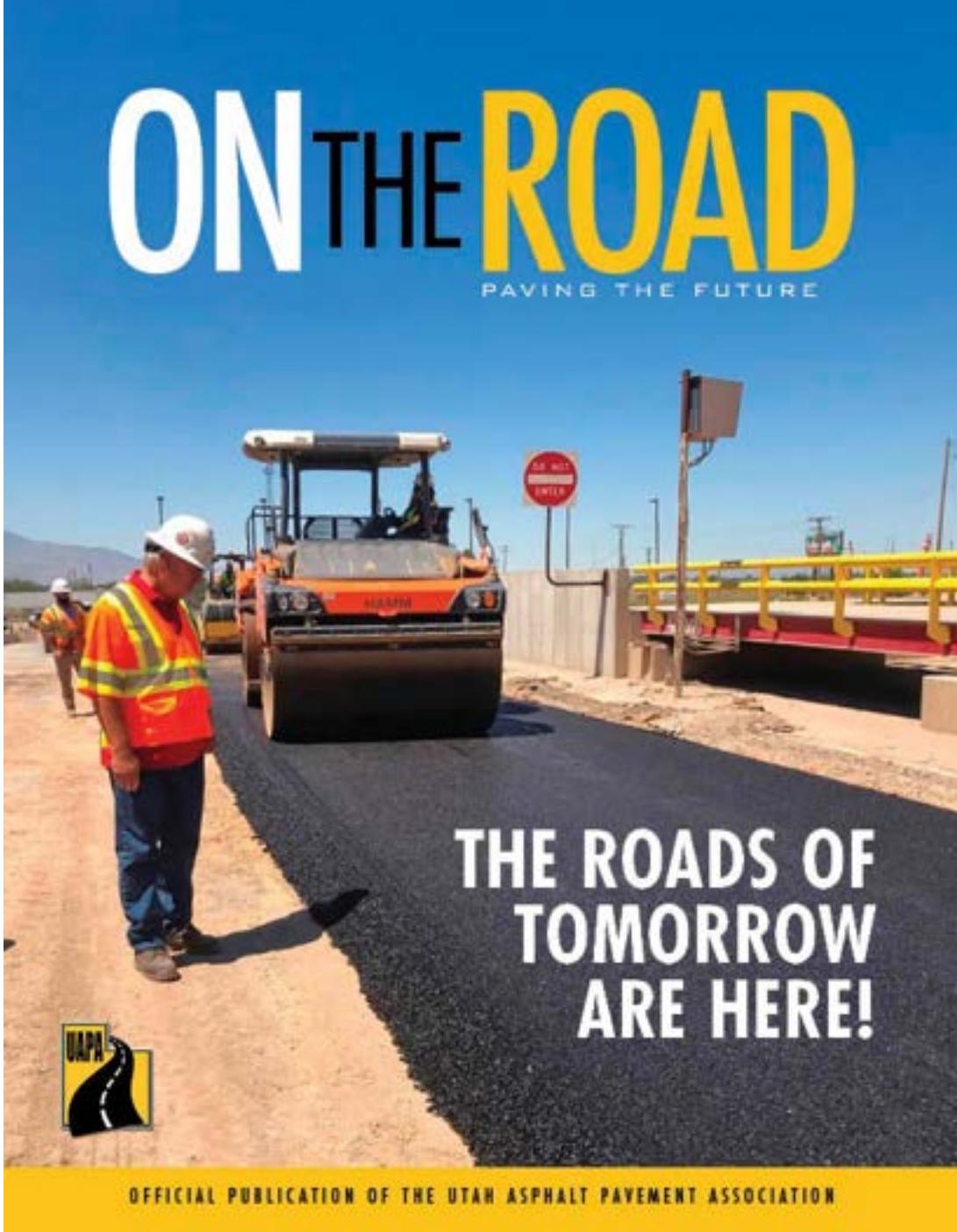
We ask that everyone keep their phones muted.
Questions can be asked through the chat feature.
We are scheduled to run from 1-3 today.
If there are follow up questions feel free to reach out to your states Asphalt & Pavement Association.
We will send out responses to all questions after the call to the emails you registered with.
My email is rickwjohnson@utahasphalt.org

Partnership – Key to Success

“When I started early on, the guiding light was always about performance — having dashboards, schedule, budget, all those things,”

“As I have grown more seasoned, I’ve realized it’s really more important how you see things, how you treat people, the values that you follow in your day-to-day decision making.”

Carlos M. Braceras, PE,
Executive Director of the Utah Department of Transportation


Flow of Call

- ❑ Howard Anderson – UDOT , State Asphalt Engineer
- ❑ Jared Dastrup – UDOT Region 4, RME
- ❑ Brody Young (Oils) – Peak Asphalt
- ❑ Chris Campbell (QA/QC) - Granite Construction
- ❑ Skylar Droubay (Transportation) – Double D Distribution
- ❑ Victor Johnson & Dan McDaniel (Construction)- Geneva Rock

Howard Anderson, PE

UDOT - State Asphalt Engineer

ON THE ROAD
PAVING THE FUTURE

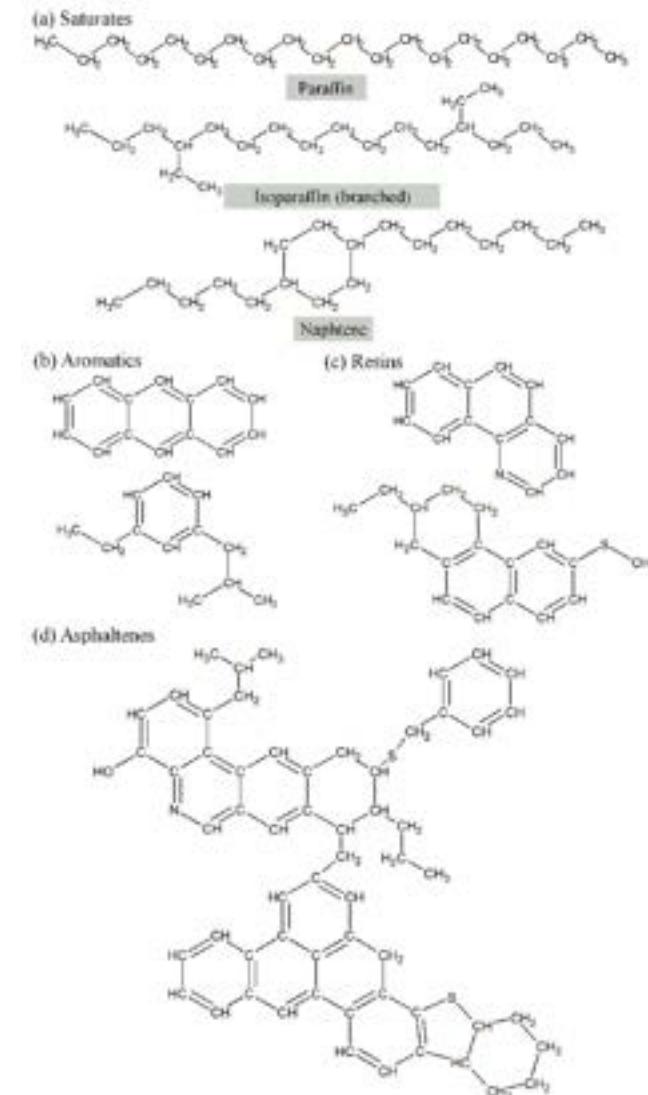
THE ROADS OF TOMORROW ARE HERE!


UAPA

OFFICIAL PUBLICATION OF THE UTAH ASPHALT PAVEMENT ASSOCIATION

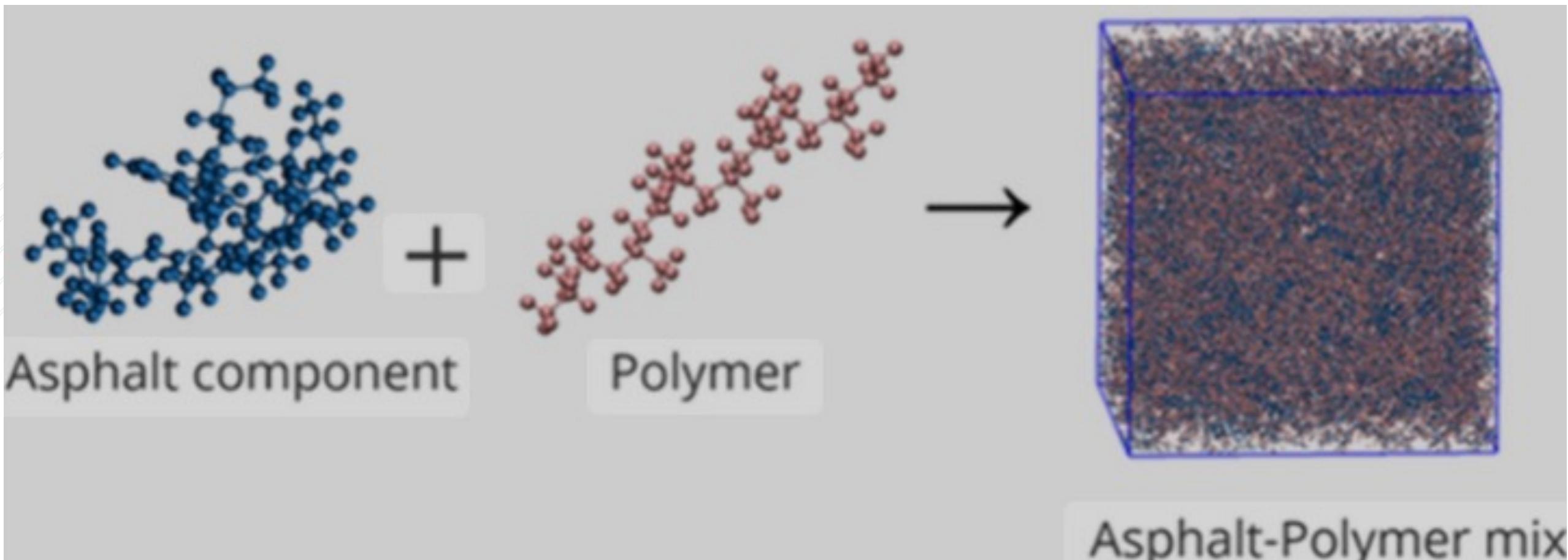
A construction worker in a high-visibility vest and hard hat stands on a dirt shoulder next to a black asphalt road. A steamroller is on the road, and a 'No Entry' sign is visible. The text 'THE ROADS OF TOMORROW ARE HERE!' is overlaid on the asphalt.

- Density target is an easy 96 percent of the measure maximum for thick or thin lifts.
- Pavement is more rut resistant than our previous Superpave mixes
- HiMod binder allows higher binder contents
- Recycled asphalt pavement allowed in the surface course
- Regular dense graded aggregates used

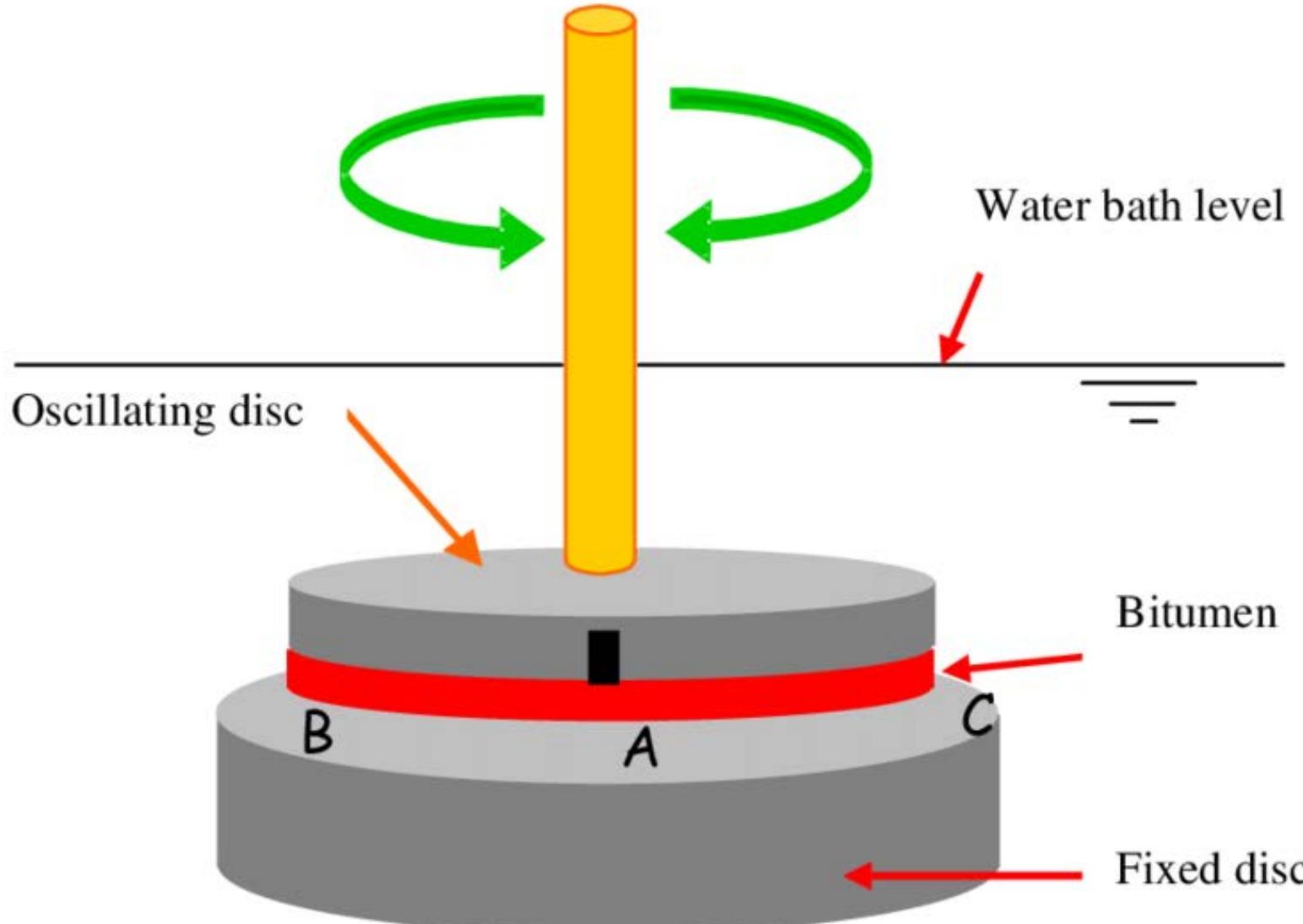

Asphalt Binder:

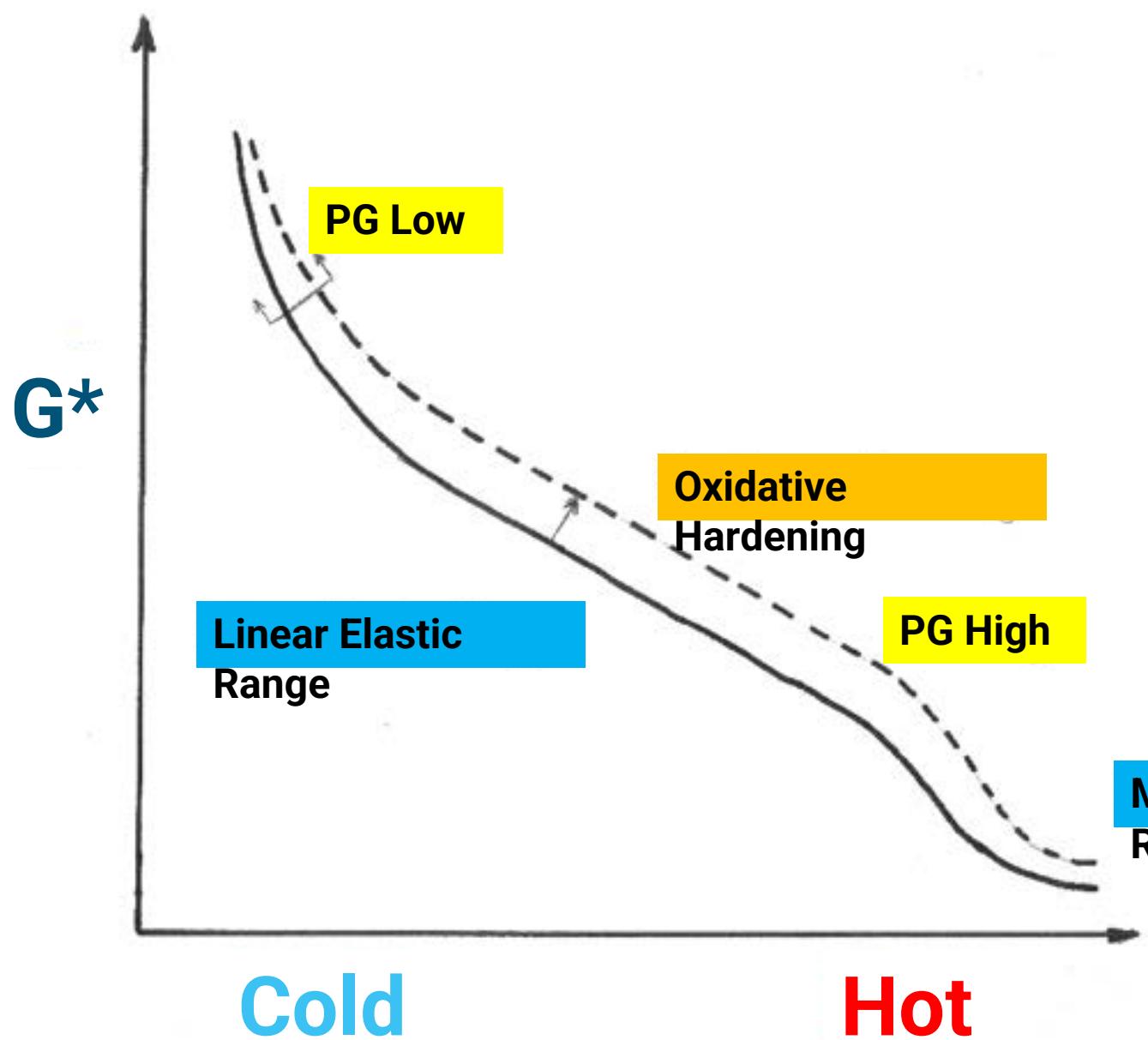
- Asphalt cement or binder is a dark brown to black sticky, semi-solid (viscoelastic), oil-based material that binds together the aggregate components of asphalt concrete.
- It's a mixture of hydrocarbons that come from crude petroleum, the leftovers after the higher cost volatile fractions are distilled off .

Typical Asphalt Molecules


- A chemist understands this....
- What can engineers see that may help?
- We have Hydrogen and Carbon atoms.
- We can learn the names and the basic properties of each.
- Asphalt is a hydrocarbon

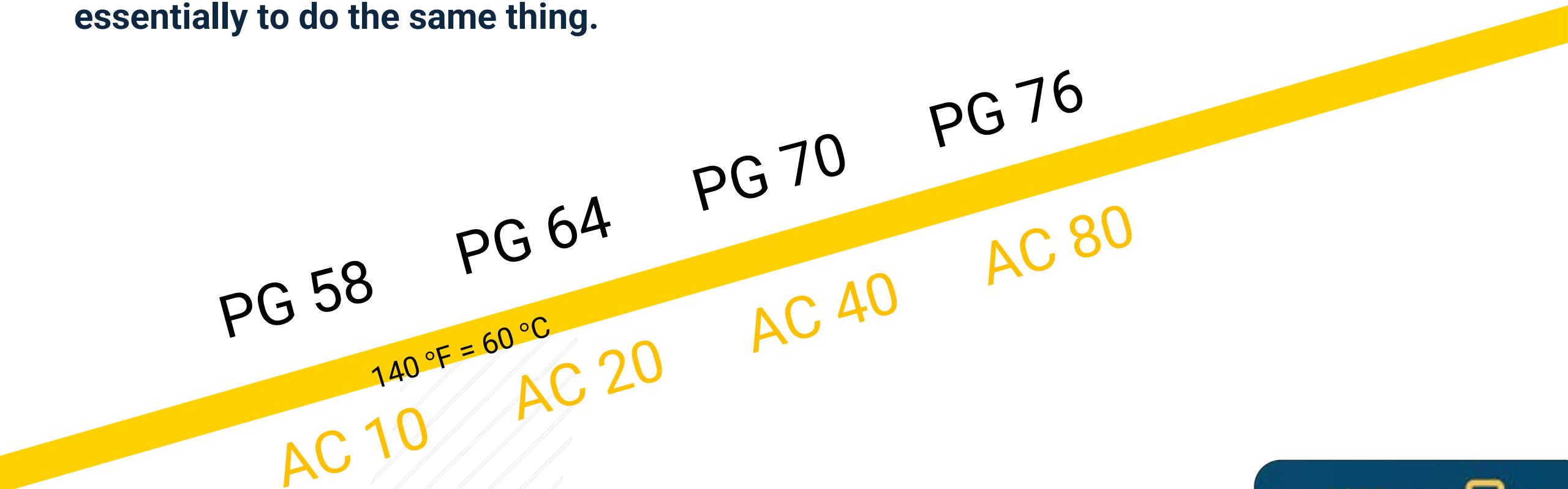
SBS comes in different types. It is generally combustible with asphalt with a little help from the chemist.

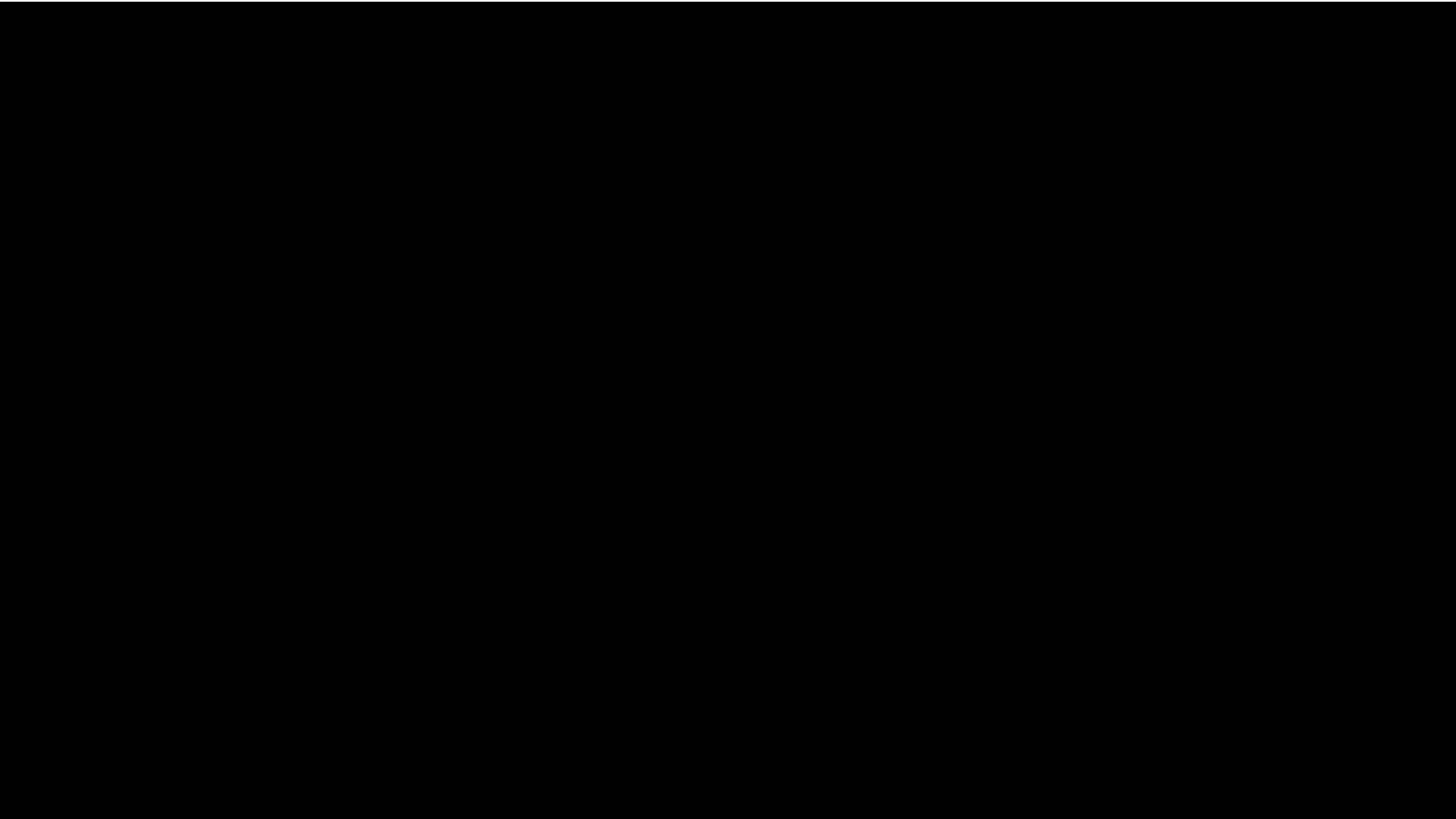

Styrene-Butadiene-Styrene is a block copolymer ($C_8H_8 - C_4H_6 - C_8H_8$), SBS = $C_{20}H_{22}$



Dynamic Shear
Rheometer,
(DSR)

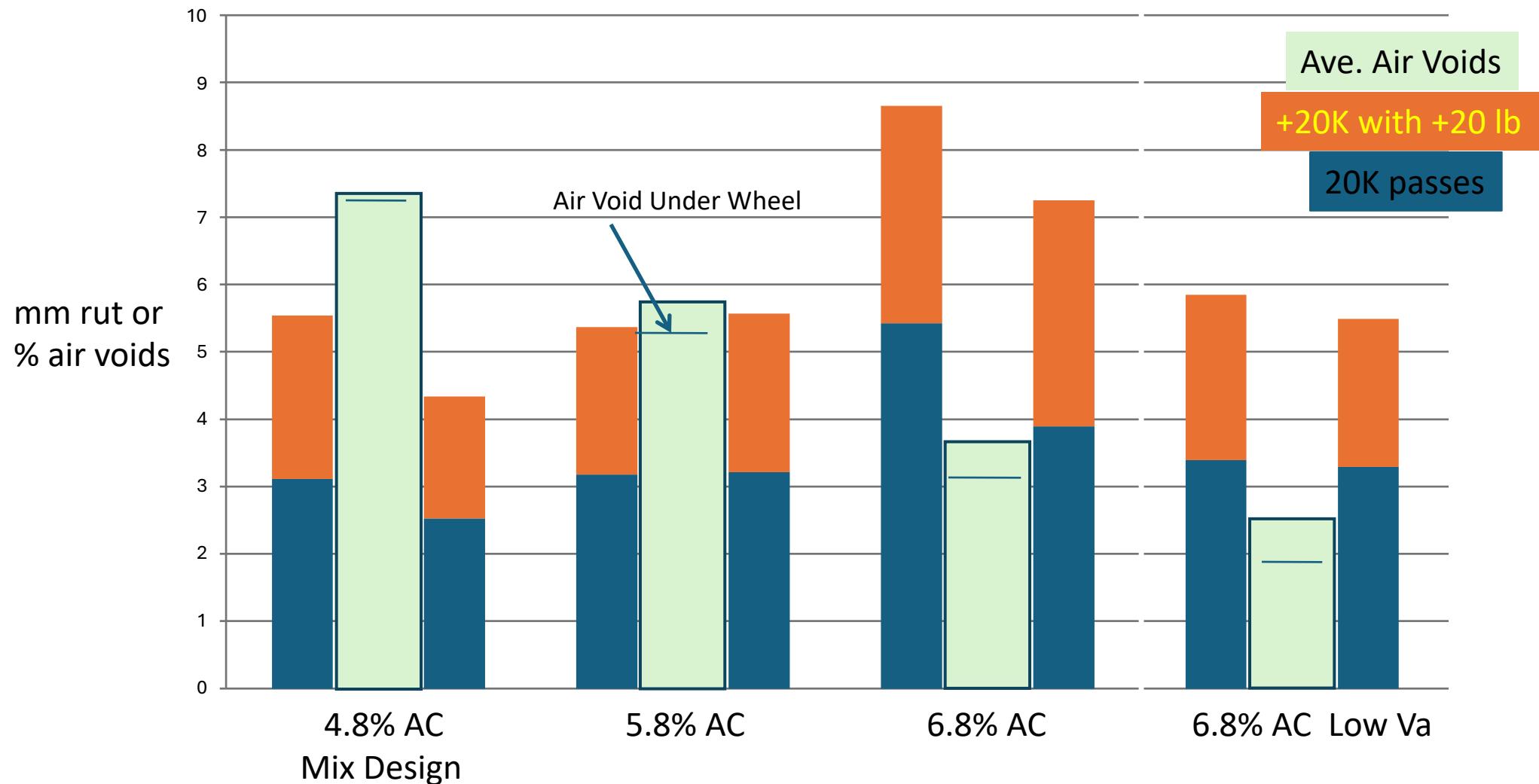
Gives us G^* and
the Phase Angle





AC grading system, absolute viscosity doubled from grade to grade at 140°F.

PG grades change 6°C with 1.0 kPa G* requirement held constant. It was set up to essentially to do the same thing.


This is \approx 14 days after coins were placed.

Double Hamburg Test

PG 76-34

2025 Utah
Transportation
Conference

Skid Testing Results

- British Pendulum Test
(AASHTO T-278)
- Existing Pavement
 - **41** average skid number
- New Pavement
 - **53** average skid number

TABLE 1 Volume Reduction to 15°C

to	Observed Temperature, °C	Volume Correction ^{A,B} Factor to 15°C		Observed Temperature, °C	Volume Correction ^{A,B} Factor to +50°C to 15°C	
		A	B		A	B
	0	1.0095	1.0108	25.0	0.9937	0.9
	0.5	1.0092	1.0104	25.5	0.9934	0.9
	1.0	1.0088	1.0101	26.0	0.9931	0.9
	1.5	1.0085	1.0097	26.5	0.9928	0.9
	2.0	1.0082	1.0094	27.0	0.9925	0.9
	2.5	1.0079	1.0090	27.5	0.9922	0.9
	3.0	1.0076	1.0088	28.0	0.9918	0.9
	3.5	1.0073	1.0083	28.5	0.9915	0.9
	4.0	1.0069	1.0079	29.0	0.9912	0.9
	4.5	1.0066	1.0076	29.5	0.9909	0.9
	5.0	1.0063	1.0072	30.0	0.9906	0.9
	5.5	1.0060	1.0068	30.5	0.9903	0.9
	6.0	1.0057	1.0065	31.0	0.9900	0.9
	6.5	1.0054	1.0061	31.5	0.9897	0.9
	7.0	1.0050	1.0057	32.0	0.9893	0.9
	7.5	1.0047	1.0054	32.5	0.9890	0.9
	8.0	1.0044	1.0050	33.0	0.9887	0.9
	8.5	1.0041	1.0047	33.5	0.9884	0.9
	9.0	1.0038	1.0043	34.0	0.9881	0.9
	9.5	1.0035	1.0039	34.5	0.9878	0.9
	10.0	1.0031	1.0036	35.0	0.9875	0.9
	10.5	1.0028	1.0032	35.5	0.9872	0.9
	11.0	1.0025	1.0029	36.0	0.9869	0.9
	11.5	1.0022	1.0025	36.5	0.9865	0.9
	12.0	1.0019	1.0022	37.0	0.9862	0.9
	12.5	1.0016	1.0018	37.5	0.9859	0.9
	13.0	1.0013	1.0014	38.0	0.9856	0.9
	13.5	1.0009	1.0011	38.5	0.9853	0.9
	14.0	1.0006	1.0007	39.0	0.9850	0.9
	14.5	1.0003	1.0004	39.5	0.9847	0.9
	15.0	1.0000	1.0000	40.0	0.9844	0.9
	15.5	0.9997	0.9996	40.5	0.9841	0.9
	16.0	0.9994	0.9993	41.0	0.9837	0.9
	16.5	0.9991	0.9989	41.5	0.9834	0.9
	17.0	0.9987	0.9986	42.0	0.9831	0.9
	17.5	0.9984	0.9982	42.5	0.9828	0.9
	18.0	0.9981	0.9979	43.0	0.9825	0.9
	18.5	0.9978	0.9975	43.5	0.9822	0.9
	19.0	0.9975	0.9971	44.0	0.9819	0.9

How much can the binder increase in volume with hot weather?

Let the VMA be 15 percent,
And the Air voids 2 percent,
Then we have 13 percent
effective binder volume.

Take binder from 25°C
To 60°C (realistic limit for a mix)
13*1.0225=13.29%

$$(1/0.9937) = 1.0063 \text{ @ } 25^\circ \text{C}$$

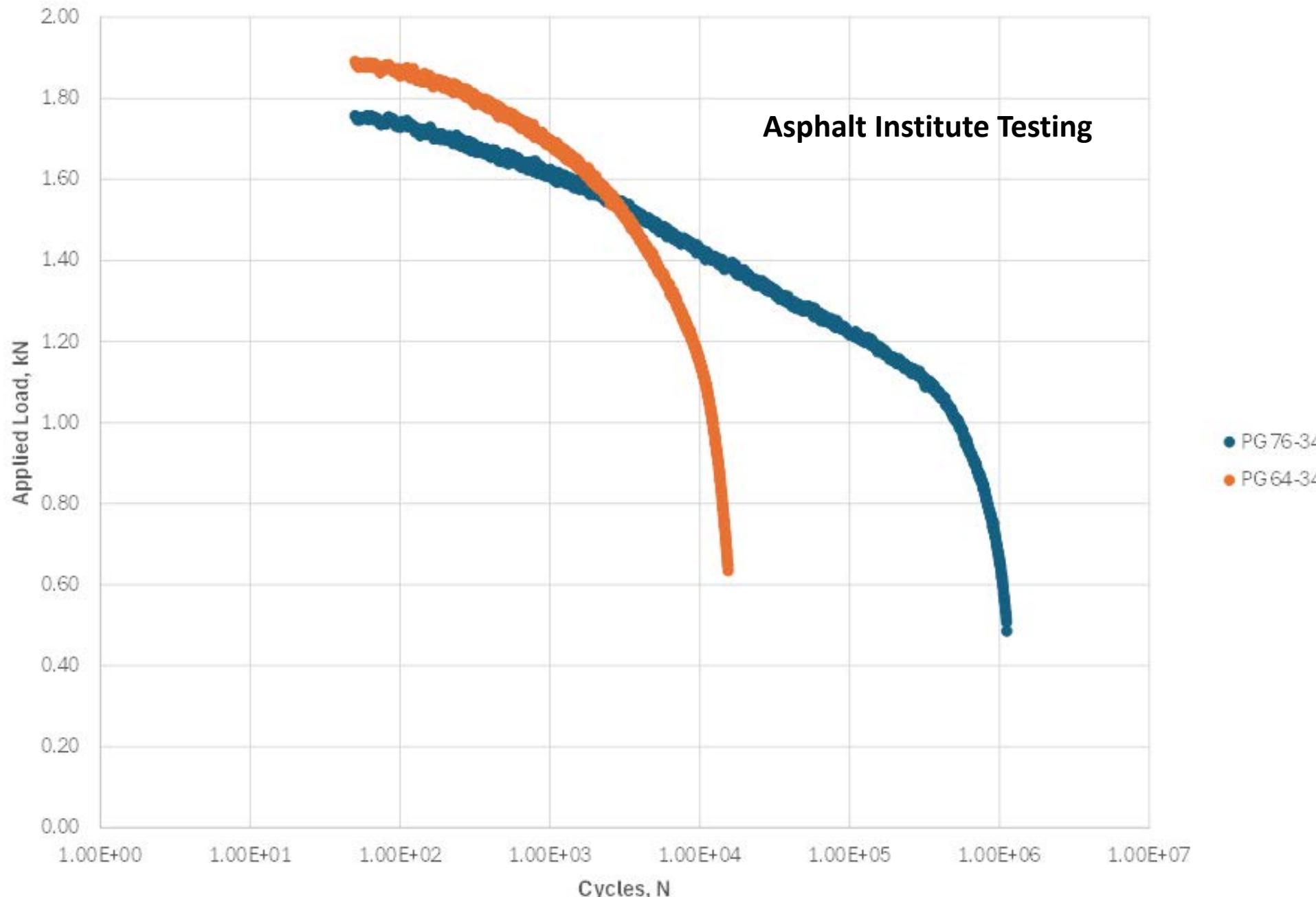
$$(1/0.9720) = 1.0288 \text{ @ } 60^\circ \text{C}$$

$$1.0288 - 1.0063 = 1.0225 \text{ from } 25 \text{ to } 60^\circ \text{C}$$

Observed Temperature, °C	Volume Correction ^{A,B} Factor to 15°C		Observed Temperature, °C	Volume Correction ^A 15°C
	A	B		
50.0	0.9782	0.9752	75.0	0.9628
50.5	0.9779	0.9748	75.5	0.9625
51.0	0.9775	0.9745	76.0	0.9622
51.5	0.9772	0.9741	76.5	0.9619
52.0	0.9769	0.9738	77.0	0.9616
52.5	0.9766	0.9734	77.5	0.9613
53.0	0.9763	0.9731	78.0	0.9609
53.5	0.9760	0.9727	78.5	0.9606
54.0	0.9757	0.9724	79.0	0.9603
54.5	0.9754	0.9720	79.5	0.9600
55.0	0.9751	0.9717	80.0	0.9597
55.5	0.9748	0.9713	80.5	0.9594
56.0	0.9745	0.9710	81.0	0.9591
56.5	0.9741	0.9706	81.5	0.9588
57.0	0.9738	0.9703	82.0	0.9585
57.5	0.9735	0.9699	82.5	0.9582
58.0	0.9732	0.9696	83.0	0.9579
58.5	0.9729	0.9692	83.5	0.9576
59.0	0.9726	0.9689	84.0	0.9573
59.5	0.9723	0.9685	84.5	0.9570
60.0	0.9720	0.9682	85.0	0.9567
60.5	0.9717	0.9678	85.5	0.9564
61.0	0.9714	0.9675	86.0	0.9561
61.5	0.9711	0.9671	86.5	0.9558
62.0	0.9708	0.9668	87.0	0.9555
62.5	0.9704	0.9664	87.5	0.9552
63.0	0.9701	0.9661	88.0	0.9549
63.5	0.9698	0.9658	88.5	0.9546
64.0	0.9695	0.9654	89.0	0.9542
64.5	0.9692	0.9651	89.5	0.9539
65.0	0.9689	0.9647	90.0	0.9536
65.5	0.9686	0.9644	90.5	0.9533
66.0	0.9683	0.9640	91.0	0.9530
66.5	0.9680	0.9637	91.5	0.9527
67.0	0.9677	0.9633	92.0	0.9524
67.5	0.9674	0.9630	92.5	0.9521
68.0	0.9671	0.9626	93.0	0.9518
68.5	0.9668	0.9623	93.5	0.9515
69.0	0.9665	0.9619	94.0	0.9512
69.5	0.9661	0.9616	94.5	0.9509
70.0	0.9658	0.9612	95.0	0.9506
70.5	0.9655	0.9609	95.5	0.9503
71.0	0.9652	0.9605	96.0	0.9500
71.5	0.9649	0.9602	96.5	0.9497
72.0	0.9646	0.9599	97.0	0.9494
72.5	0.9643	0.9595	97.5	0.9491
73.0	0.9640	0.9592	98.0	0.9488
73.5	0.9637	0.9588	98.5	0.9485
74.0	0.9634	0.9585	99.0	0.9482
74.5	0.9631	0.9581	99.5	0.9479

^AUse column A factors for asphalts with density at 15°C of 966 kg/m³ or higher.

Specific Heat, Time to Cool Down/Heat Up


- Water: 4.187 kJ/Kg°C
- Liquid asphalt: 2.176 kJ/Kg°C
- Solid asphalt binder: 1.675 kJ/Kg°C
- Gravel: 0.84 to 0.92 kJ/Kg°C
- Sand: 0.67 to 0.84 kJ/Kg°C

AI Beam Fatigue Testing

Mixture	Specimen	Air Voids (%)	Strain ($\mu\epsilon$)	Flexural Modulus at 50 cycles, MPa	Cycles to Failure (N_f)	
					Test Data	Cycles*Modulus (AASHTO T321)
PG 64-34 - Typical Mix	1	7.7	300	7,491	1,199,504	
	2	7.1	400	7,879	162,013	
	3	6.9	475	7,542	171,958	
	4	6.8	525	7,482	23,894	
	5	7.4	600	7,360	12,162	
PG 76-34 - HiMod Mix	1	4.2	475	6,104	7,817,272	
	2	3.8	525	6,320	1,200,843	
	3	3.9	600	5,882	913,716	
	4	4.0	675	5,655	276,589	
	5	4.3	750	5,030	20,180	

Flexural Beam Fatigue, 15°C, 600E-06 Strain

PG 76-34

Project	CT Index	Hamburg (mm)
2023 SR-196; MP 24 to I-80	563.6	6.24
SR-196; MP 24 to I-80	596.0	3.40
I-80 at Echo and Wanship Bridge Preservation	762.9	6.36
2024 US-6 Improvements in Spanish Fork	1531.7	3.54
SR-276; SR-95 N Wash to Park & SR-95 MP 34-41	-	5.08
SR-162 & SR-262 Safety and Energy Corridor Project	-	5.53
US-89; Passing Lanes Near Buckskin Wash	-	2.45
SR-171; 700 W. to State Street	-	4.99
US-40; Duchesne W City Limits to Antelope Creek	-	4.16
US-6; Tucker to Soldier Summit	1243.3	6.24
I-80; MP 41 to MP 50	376.6	3.01
2025 SR-30; SR-23 to SR-252	378.2	2.38
I-15; Shepard Ln Intchg & Ped Overpass	891.3	5.45
SR-36 SB; Sunset Ln to Stansbury Pkwy	575.0	6.98
SR-162 & SR-262 Safety and Energy Corridor Project	-	4.26
SR-209; Bangerter Highway to Redwood Rd.	822.6	7.36
SR-30; SR-252 to US-91	704.9	8.08
US-6; Grassy Trail Creek to Icelander	-	4.16
SR-257; Cattle Guard to MP 61	998.6	7.73
I-80; MP 131.4 to 134.0	960.5	8.08
I-80; Kimball's Junction to US-40	426.5	4.60
I-80; Kimball's Junction to US-40	499.7	4.56

UDOT Mix Design Summaries

PG 64-34

Project	CT Index	Hamburg (mm)
2023 US-91, 3200 S, & 2000 W Intersection Realignment	255.6	7.09
US-89; Farmington to I-84	214.7	4.44
500 West; 3300 South to 3900 South	226.8	3.94
US-40 Connector Road	263.8	5.00
I-80; 1300 E to 2300 E and I-215; 3300 S to 4500 S	68.4	4.66
PG Interchange Area Capacity Improvements	63.0	5.88
SR-114; US-89 to Geneva Road	170.0	6.10
SR-68: 6200 South to I-215	250.2	5.47
3300 South and 900 West	155.8	4.71
I-80; Emory to Castle Rock	168.2	5.19
US-40 and SR-121 Pavement Preservation	-	4.84
US-40 and SR-121 Pavement Preservation	-	3.98
US-189; SR-113 Charleston to US-40 Heber	123.9	3.96
SR-264; Electric Lake Boat Ramp to SR-96	153.8	4.73
US-6; SR-55 to 100 W Wellington	-	3.83
Heber City Bypass - Cemetery Section B	199.0	6.50
2024 4700 South; 4000 West to 5600 West	194.5	4.83
SR-177, West Davis Hwy; I-15 & SR-67 to SR-193	-	4.40
I-15; SR-97 (5600 South), widening of 5600 South	57.5	4.78
I-15; SR-97 (5600 South), widening of 5600 South	114.2	3.44
US-6 Improvements in Spanish Fork	63.0	5.88
PG Interchange Area Capacity Improvements	118.4	4.73
PG Interchange Area Capacity Improvements	55.5	3.17
PG Interchange Area Capacity Improvements	55.5	3.17
SR-9; East Zion Roundabout & Improvements	-	7.14
SR-7; Airport Pkwy to Sand Hollow Rd	-	5.38
Cottonwood Wash Bridge Replacement (0C 301)	-	4.48
I-70; Sinbad to Brake Test	-	5.47
I-70; Sinbad to Brake Test	-	5.04
Springville/Spanish Fork Interchange Phase 1	248.2	4.96
SR-132; Canyon EB Passing Lane Connection	176.0	5.90
US-89; SR-12 to Panguitch	-	6.42
SR-24; Hanksville Airport to I-70	-	4.48
2025 Riverton - 13400 So Bike Lanes; 2700 W to 3200 W	198.6	3.79
I-15; SR-97 (5600 South), widening of 5600 South	153.0	3.56
BFP: Holladay City Bridge Replacement 035131D	190.5	7.31
Parkway Blvd (2700 S); MVC to 6400 West	54.2	3.18
Parkway Blvd (2700 S); MVC to 6400 West	-	4.06
SR-273; US-89 to I-15	160.0	3.72
Undercrossing in Saratoga at Redwood Rd & MP 25.1	266.1	4.48
SR-186; North Temple to 400 S	184.9	4.24
Bangerter Highway South Interchanges	230.4	7.73
I-80; Kimball's Junction to US-40	153.8	6.16

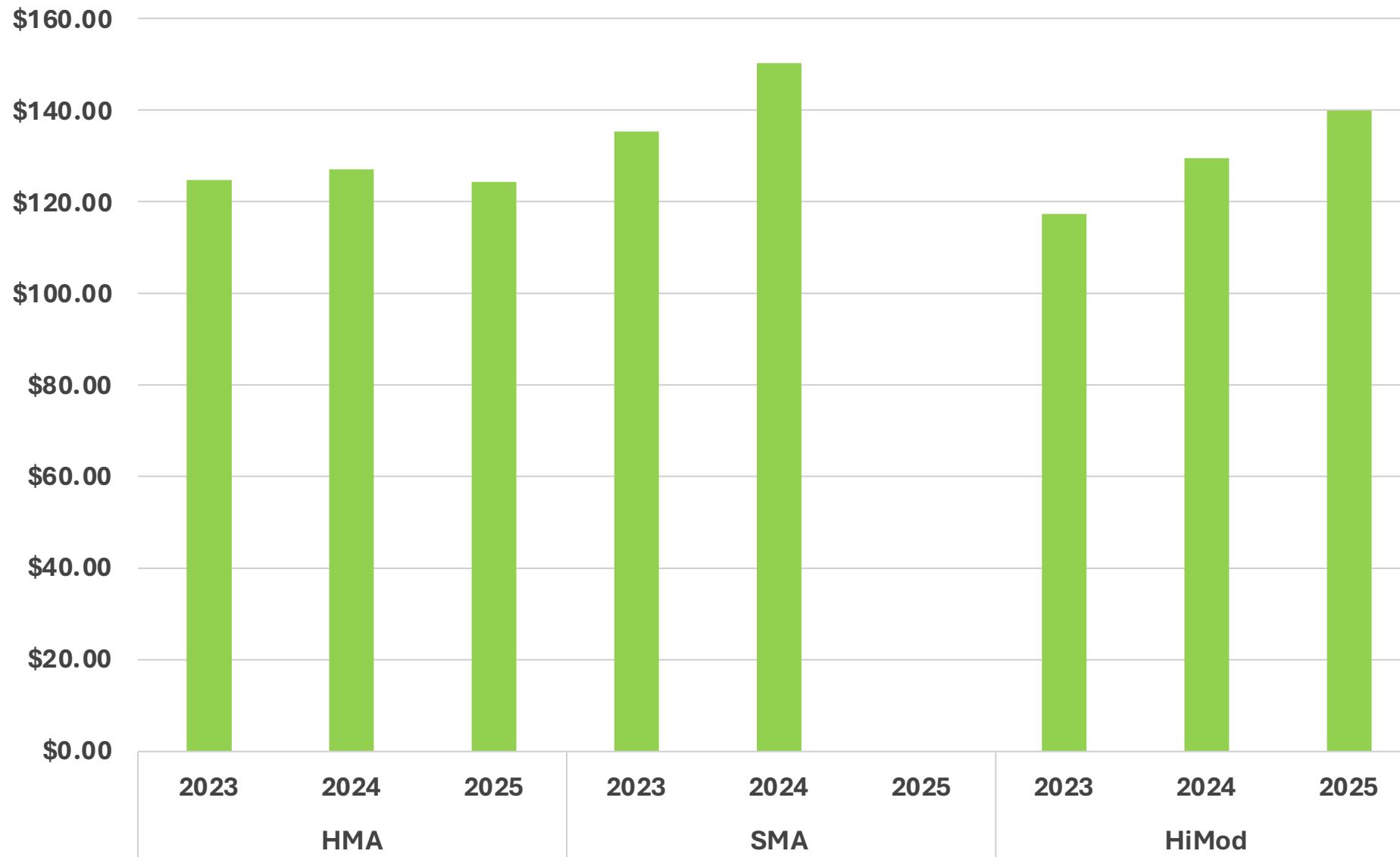
PG 76-34

Project	CT Index	Hamburg (mm)
2023 SR-196; MP 24 to I-80	563.6	6.24
SR-196; MP 24 to I-80	596.0	3.40
I-80 at Echo and Wanship Bridge Preservation	762.9	6.36
2024 US-6 Improvements in Spanish Fork	1531.7	3.54
SR-276; SR-95 N Wash to Park & SR-95 MP 34-41	-	5.08
SR-162 & SR-262 Safety and Energy Corridor Project	-	5.53
US-89; Passing Lanes Near Buckskin Wash	-	2.45
SR-171; 700 W. to State Street	-	4.99
US-40; Duchesne W City Limits to Antelope Creek	-	4.16
US-6; Tucker to Soldier Summit	1243.3	6.24
I-80; MP 41 to MP 50	376.6	3.01
2025 SR-30; SR-23 to SR-252	378.2	2.38
I-15; Shepard Ln Intchg & Ped Overpass	891.3	5.45
SR-36 SB; Sunset Ln to Stansbury Pkwy	575.0	6.98
SR-162 & SR-262 Safety and Energy Corridor Project	-	4.26
SR-209; Bangerter Highway to Redwood Rd.	822.6	7.36
SR-30; SR-252 to US-91	704.9	8.08
US-6; Grassy Trail Creek to Icelander	-	4.16
SR-257; Cattle Guard to MP 61	998.6	7.73
I-80; MP 131.4 to 134.0	960.5	8.08
I-80; Kimball's Junction to US-40	426.5	4.60
I-80; Kimball's Junction to US-40	499.7	4.56

**UDOT Mix Design Summaries
(HiMod)**

PG 76-34 Performance: Higher Cracking Durability Without Increased Rutting

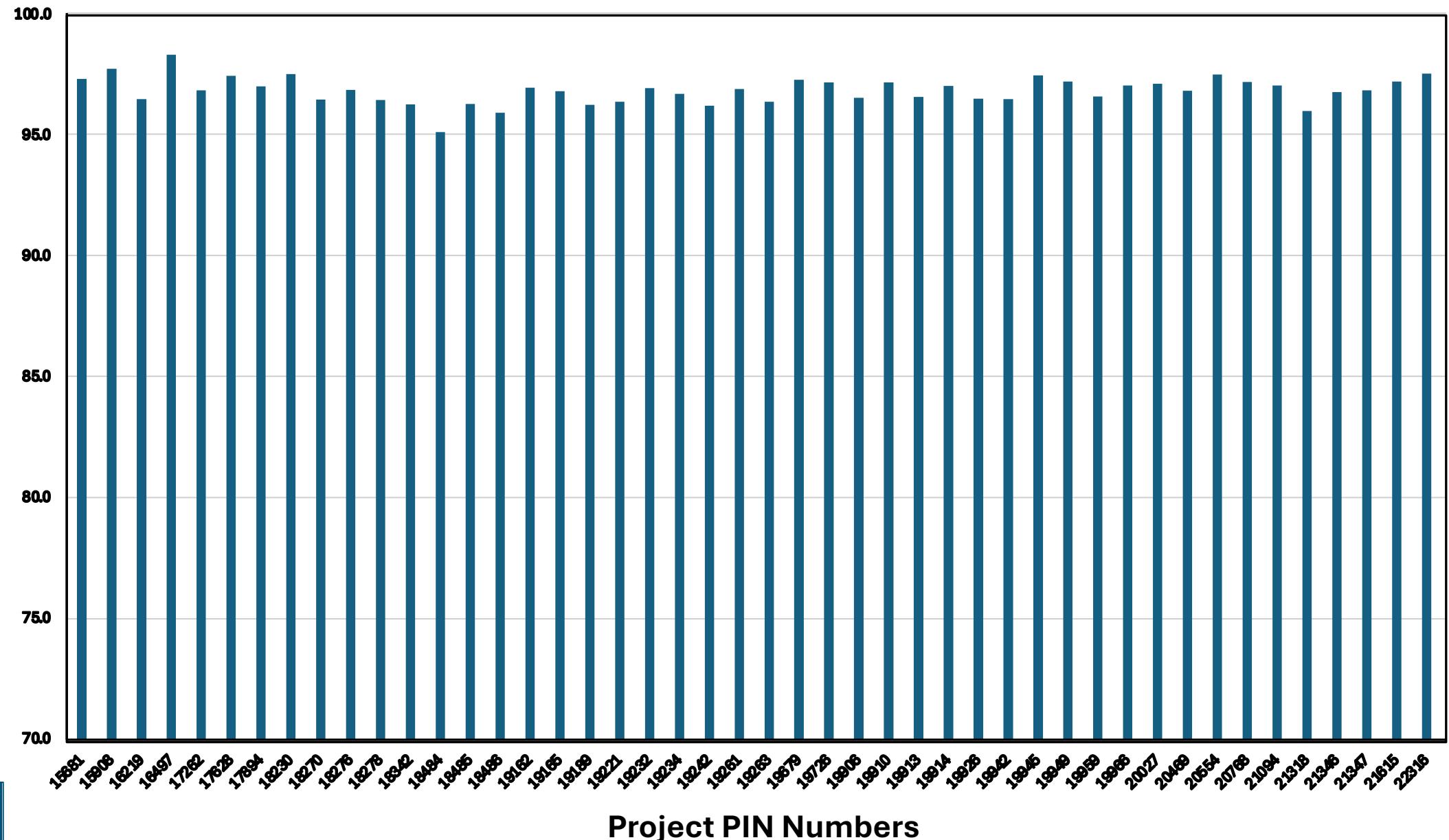
- **PG 76-34 demonstrates improved cracking resistance without a rutting penalty:**
 - CT Index increased significantly across projects
 - Average Hamburg rutting depth remains consistent with PG 64-34
- **Performance contradicts the traditional cracking-rutting tradeoff**


Mix Design Data	PG 76-34	PG 64-34
CT Index Range	377-1532 (avg ~755)	54-266 (avg ~161)
Hamburg Rutting Depth Range (mm)	2.4-8.1 (avg ~5.2)	3.2-7.7 (avg ~4.9)

Utah Mixture Trends (Highway Only)

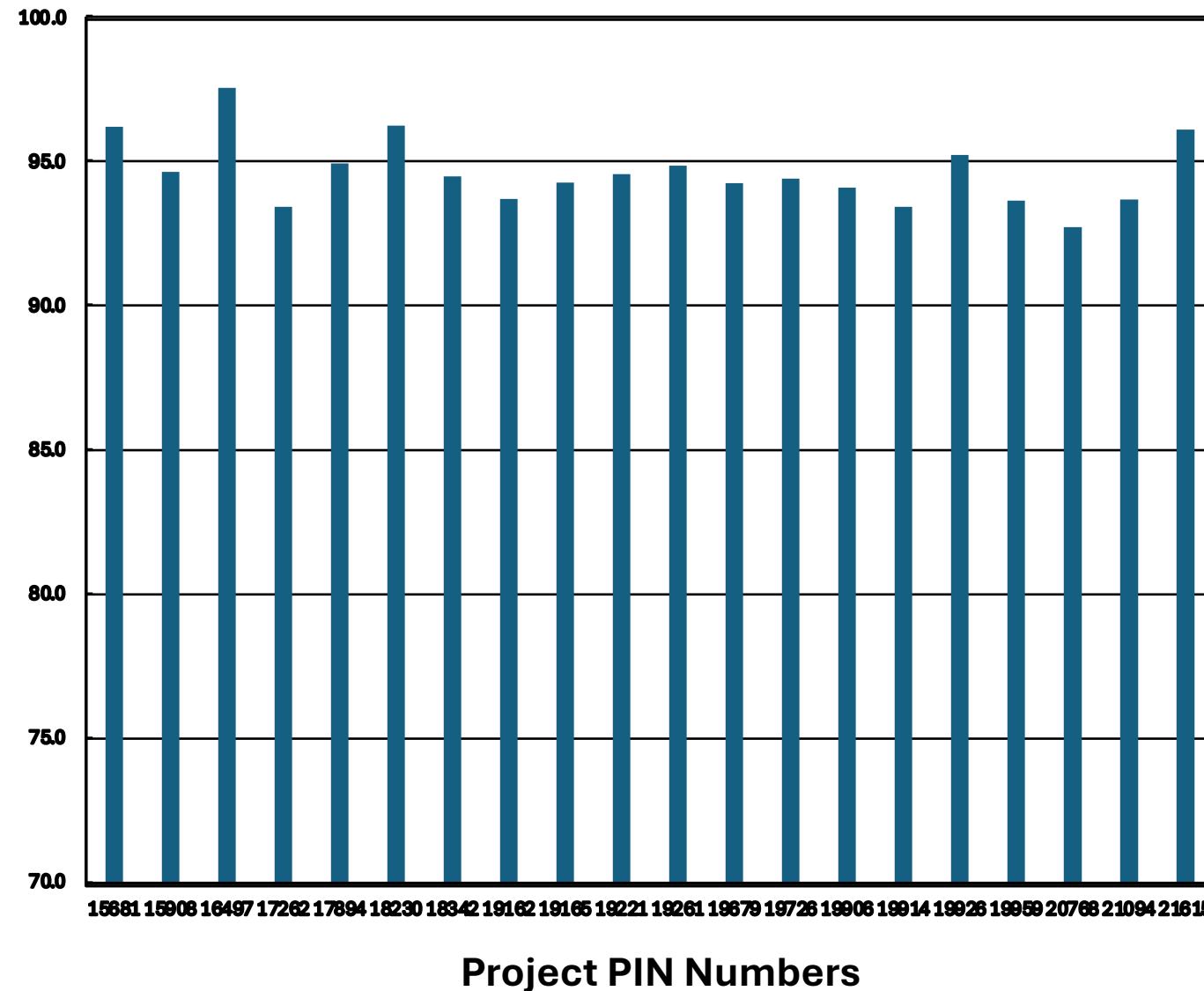
Utah Mixture Trends (Highway Only)

Average \$/ton



Pin	Recent HiMod Projects Page 1	Project Number	Average Mat Density
15681	SR-30; SR-23 to SR-252	F-0030(69)102	97.4
15908	1300 East; 2100 South to Southern City Boundary	F-2076(2)4	97.8
16219	SR-196; MP 24 to I-80	F-0196(7)24	96.5
16497	US-6 Improvements in Spanish Fork	F-0006(230)174	98.4
17262	SR-276; SR-95 N Wash to Park & SR-95 MP 34-41	F-R 499(457)	96.9
17628	SR-36 SB; Sunset Ln to Stansbury Pkwy	S-0036(50)61	97.5
17894	SR-162 & SR-262 Safety and Energy Corridor Project	F-R 499(367)	97.1
18230	US-89; Passing Lanes Near Buckskin Wash	S-0089(572)35	97.6
18270	I-80; Stillmans Bridge to SR-65	F-I80-3(213)129	96.5
18276	SR-171; 700 W. to State Street	F-0171(72)9	96.9
18278	SR-173; 4800 W. to Bangerter Hwy	F-0173(42)4	96.5
18342	US-191 Realignment near Simplot	F-0191(194)365	96.3
18484	SR-243; US-89 to Beaver Mountain	S-0243(1)0	95.2
18485	SR-200; SR-61 to Idaho	S-0200(1)0	96.3
18486	SR-81; SR-30 to Fielding	S-0081(2)0	96.0
19162	US-40; Duchesne W City Limits to Antelope Creek	F-0040(224)86	97.0
19165	SR-35 & SR-87 Pavement Preservation	F-0035(14)45	96.9
19189	SR-35; MP 0 to 12.35	F-0035(13)0	96.3
19221	US-89; Kanab Creek Bridge to MP 72.355	F-0089(603)69	96.4
19232	SR-190; Pavement Preservation	F-0190(29)2	97.0
19234	SR-209; Bangerter Highway to Redwood Rd.	F-0209(58)8	96.8
19242	US-89; 9400 S. to I-215	F-0089(319)367	96.3
19261	SR-106; 1700 South to US-89	F-0106(31)5	96.9
19263	SR-30; SR-252 to US-91	F-0030(86)110	96.4

Pin	Recent HiMod Projects Page 2	Project Number	Average Mat Density
19679	Cougar Lane; Niagara Way to Kearns High Drive	F-2146(1)8	97.3
19726	Cottonwood Wash Bridge Replacement (0C 301)	F-0095(18)115	97.2
19906	US-6; Tucker to Soldier Summit	F-0006(245)204	96.6
19910	I-15; Arizona State Line to Cottonwood Creek	F-I15-1(142)0	97.2
19913	US-191; Dry Valley to Hatch Wash	F-0191(206)89	96.6
19914	US-6; Grassy Trail Creek to Icelander	F-0006(252)222	97.1
19926	SR-257; Cattle Guard to MP 61	F-0257(8)46	96.6
19942	I-80; MP 41 to MP 50	F-I80-2(82)41	96.5
19945	SR-186; North Temple to 400 S.	F-0186(50)2	97.5
19949	SR-201; 900 W to State Street	F-0201(58)17	97.3
19959	US-40; Antelope Creek to to Pole Line Rd	F-0040(232)97	96.6
19966	SR-28; I-15 S of Nephi to I-15 N of Nephi	F-0028(19)38	97.1
20027	SR-175; Pavement Restoration at Various Locations	F-R 299(439)	97.2
20469	US-40; I-80 to SR-248	F-0040(219)0	96.9
20554	Ramps on I-215; State, Fashion	F-R 299(458)	97.6
20768	SR-96; Clear Creek to MP 18.0	S-0096(8)0	97.2
21094	US-191; Improvements North of Summit	S-0191(212)272	97.1
21318	US-89; SR-204 to SR-134	F-0089(595)417	96.1
21346	I-80; MP 131.4 to 134.0	F-I80-3(216)131	96.8
21347	I-80; Kimball's Junction to US-40	F-I80-4(184)143	96.9
21615	I-80; Parley's Way Ramps	F-I80-1(70)0	97.3
22316	I-80; MP 53-55 Pavement Repairs	F-I80-2(84)53	97.6
Overall Project Average Density from Cores:			96.9

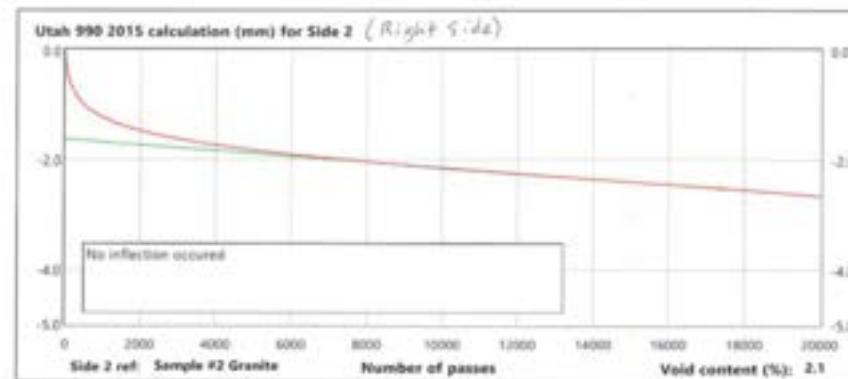
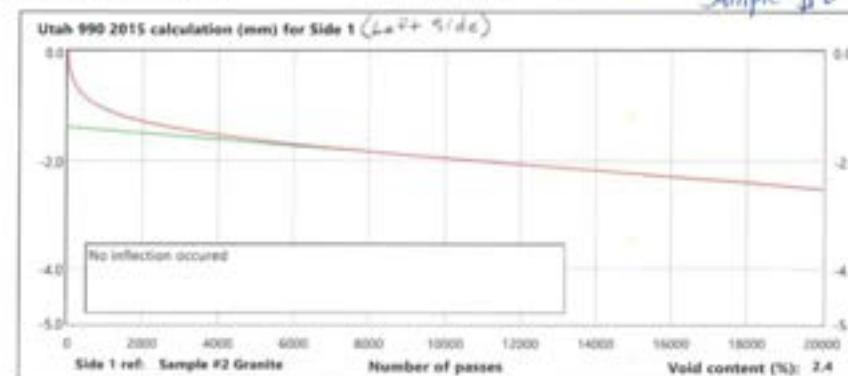

HiMod Project Average Mat Densities

Ave Density
96.9% Gmm
High: 98.4%
Low: 95.2
Std: 0.55

HiMod Project Average Joint Densities

Ave Joint Density
94.7% Gmm

High: 97.6%
Low: 92.8
Std: 1.2



Hamburg Wheel-Tracker Test Results

UDOT 990 2015
Date/time of test: 11/4/2025 6:06 AM
Laboratory number: Central Materials 47
Project name: Granite 1-213
Submitted by: Julian

Date sampled: 11/4/2025
Job number: P1N 15489
Project number: N/A
Project Engineer: N/A
Threshold: 50%

Sample #2, 42"

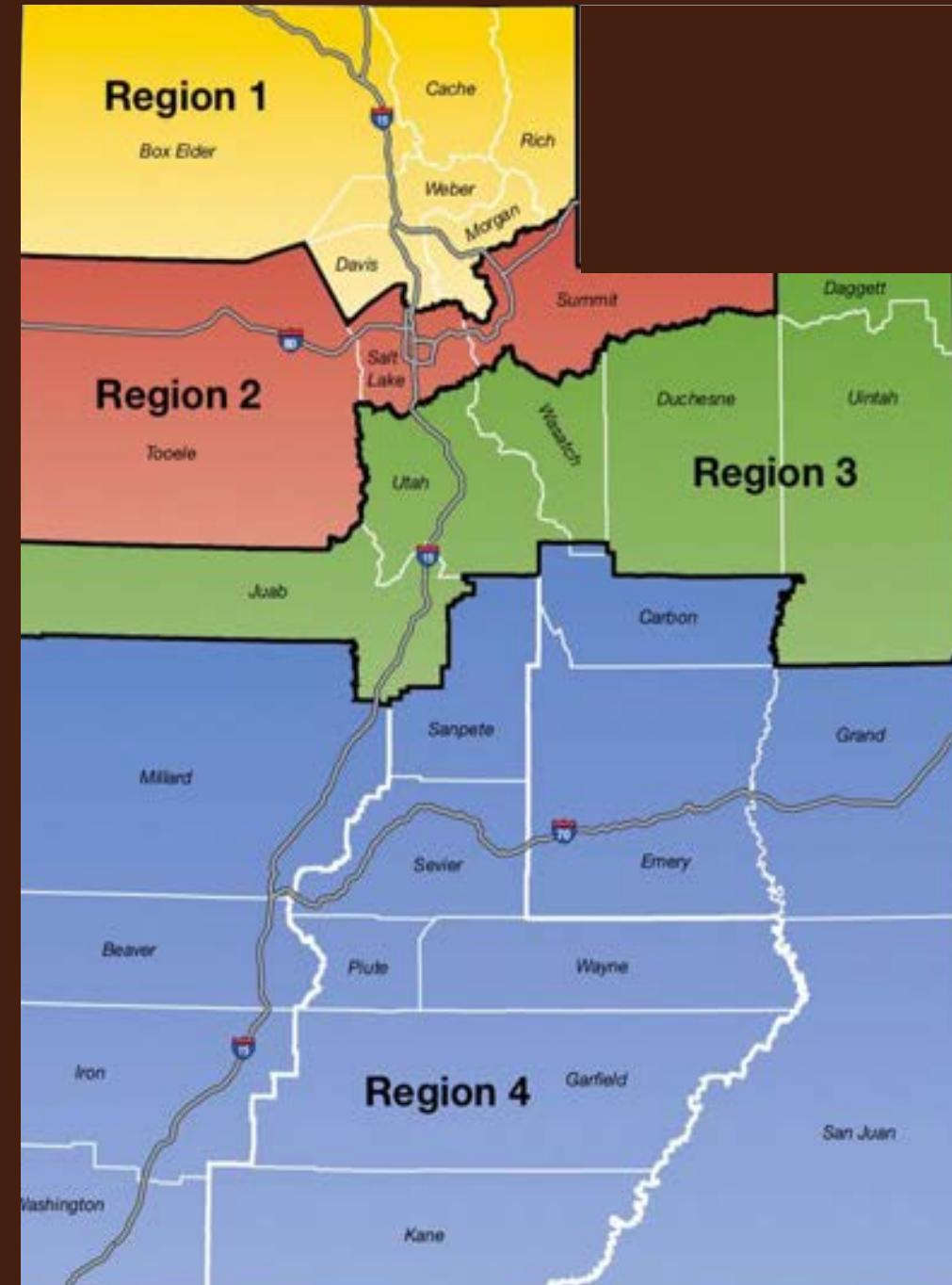
Rut depths (mm)

Pass No.	Side 1	Side 2
5000	-1.62	-1.62
10000	-1.95	-2.15
15000	-2.24	-2.40
20000	-2.52	-2.66

Mix type: HMAHMA 62 mm
Asphalt grade: 76-34
HMA production: Field
Compaction method: Stab
Mix source:
Test temperature (°C): 54.0
Mix Depth (mm): 42.00

Signature

Report version: V14.0



HiMod, thin lift
I-80, MP 41 to 50
August 2024

Jared Dastrup

UDOT

Regional Materials Engineer

High Modified Asphalt HMHMA

Jared Dastrup
Region 4 Materials Engineer

- Thin overlays
- Mill and fills
- Widenings
- Reconstruction
- Bridge deck

- Thinner Pavement Sections
- Better Compaction
- Lower Cost Mix Than SMA
- Low Rutting
- Low Cracking

Original

- 1.5" SMA / 12.5" HMA / 12" UTBC / 14" GB
- 2" SMA / 11" HMA / 14" UTBC / 16" GB
- 13" HMMMA (old model) / 12" UTBC / 14" GB
- Chip / 10" HMA / 16" UTBC / 17" GB

HMMMA

- 11" HMMMA / 12" UTBC / 14" GB
- 10" HMMMA / 12" UTBC / 14" GB
- 10" HMMMA / 12" UTBC / 14" GB
- 8" HMMMA / 10" UTBC / 12" GB

UDOT
Keeping Utah Moving

Brody Young Peak Asphalt

Director of Quality

**Idaho Asphalt
Supply, Inc.**

Hi-Mod Asphalt Binder Supplier Perspective

Brody Young

**Idaho Asphalt
Supply, Inc.**

Content

- **What is Hi-Mod Asphalt**
- **Binder Specification**
- **Manufacturing Lessons Learned**
- **Storage and Handling Lessons Learned**
- **Collaboration**

**Idaho Asphalt
Supply, Inc.**

What is a Hi-Mod Binder

- Binder modification with high SBS polymer > 6% polymer versus 2-4% SBS polymer in traditional PMAs.
- It can be implemented nicely within AASHTO M320 PG+ or M332 specification parameter framework
 - High modulus asphalt binder
 - High G* (> 1.30KPa)
 - High Polymer Content
 - Elastic Recovery > 90% @25C
 - High Durability
 - Delta Tc > -1.0C
 - Regular Workability
 - Viscosity <3.0 Pa-s @135C

Hi-Mod Specification

Test	Method	Temp	SHRP Spec.
Specific Gravity	ASTM D70	15.6°C	Report
Rotational Viscosity @135°C, (Pa.s)	AASHTO T316	135°C	3.0-
Dynamic Shear, G* modulus, (kPa)	AASHTO T315	76°C	1.3+
Flash Point, COC, (°C)	AASHTO T-48	N/A	260+
Mass Loss, (%) RTFO	AASHTO T-240	N/A	1.0-
Dynamic Shear (G*/sin d), (kPa) RTFO	AASHTO T315	76°C	2.2+
PAV Dynamic Shear (G*/sin d), (kPa)	AASHTO T315	28°C	5000-
BBR Stiffness, (MPa)	AASHTO T313	-18°C	150-300
BBR m-value	AASHTO T313	-18°C	0.300+
Delta Tc	ASTM D7643	-24°C	-1.0°C

Special Test Parameters:

Test	Method	Temp	Spec.
Phase Angle, (°)	AASHTO T315	70°C	71-
Elastic Recovery*, (%) (RTFO)	AASHTO T301 mod	25°C	90+

* 20cm elongation, cut immediately

References: AASHTO M320

**Idaho Asphalt
Supply, Inc.**

Manufacturing Hi-Mod

Producing Hi-Mod Binders requires precise mixing, temperature control and robust process equipment

It's NOT any different than producing other traditional modified binders e.g. PG76-28

No special equipment or modification to process required.

Storage and Handling Hi-Mod

Finished binder storage 325-340F

Good mixing and recirculation capability

Proper heating capacity for Tanks, Pumps and Lines

Horizontal Tanks are OK

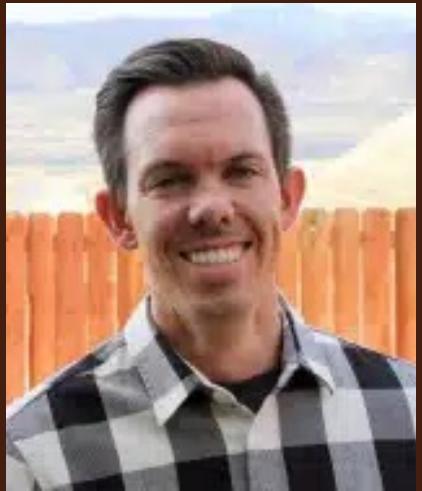
Collaboration Is Key

Collaboration between DOTs, contractors, and suppliers ensures that specifications are practical, cost-effective, innovative, and achievable—leading to safer, higher-quality, and longer-lasting pavements.

Without DOT input establishing performance & acceptance criteria may not be a success

- Willingness to try new technology and outreach to industry

Without Supplier input meeting binder spec may not be a success


Repeatable and Reproducible

Without Contractor input constructability may not be a success

Mixing and Compacting

--SUCCESS--

Skyler Droubay

Double D Distribution

Vice President

Not Your Grandpa's Asphalt

Evolution of Asphalt

High-mod asphalt is an advanced technology designed

Handling Differences

Thicker binder means you have to change your mindset a bit from dispatch to delivery

How is your Equipment?

You don't need specialized equipment; you just don't want bad equipment.

Adapting to New Technology

Just as mechanics adapt to new cars, construction practices should evolve so you don't get frustrated.

Keep It Warm - Temperature Considerations

Suppliers we need it hot

Seriously, this oil doesn't like to move below 300 degrees. All asphalt binder *should* be hot, but hi-mod binder **must** be hot.

Trailer Insulation is important

Don't use trailers from the Red Green show. You don't need special trailers, just use good insulated equipment.

Insulation rating ÷
Transport time = how
easy it will unload

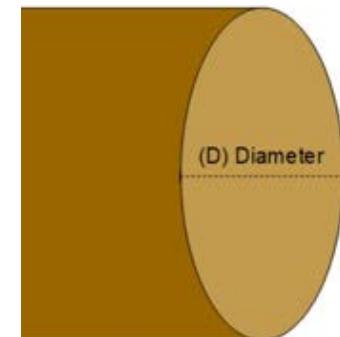
Overnight pre-loads, not my favorite

Reduce time the oil is in that trailer. We have decided we won't pre-load it the night before and sit on it until morning.

Equipment Matters - Large Pumps and Hoses

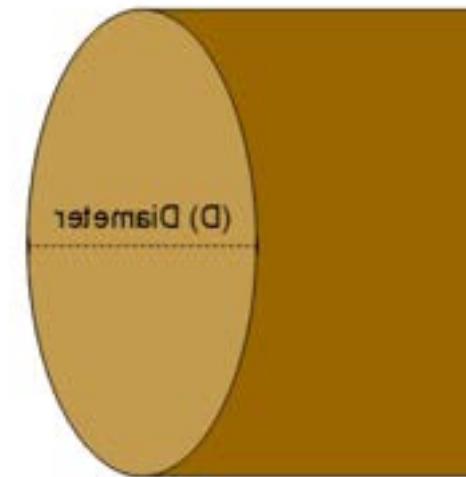
Importance of Pumps

I would recommend a 4" pump or larger at minimum



Hoses

3" hose is likely to clog. Use 4" hoses.


Pipes

3" heated traced piping is fine, bigger is always better

Benefits of Proper Equipment

You want your suppliers and vendors to have a good experience hauling this product

Sampling - Thicker Material Tips

Small Pipes are Challenging

Be prepared for a much slower sample flow

Hand held torch a very good idea

May need a torch to pre-heat the pipe so it flows out easily

Slope & anti-strips - Easier Unloading

Get a lot of slope

I would recommend a minimum 12" height difference.

Avoid Retain

You need to avoid retain that builds up and mixes products and dilutes future binder deliveries

Anti-strips are helping

If your state allows anti-strip dosing at the supplier loading rack I would consider it.

Evotherm Testing Coming

2026 season we will be doing so time tests to see what difference in unload times are when anti-strip is dosed at the rack vs after unloaded at the plant

Binder Transportation Conclusion

No doubt, it is sticky

This oil is so good and so strong.

Don't bring a knife to a gun fight

Make sure you have good tools in place, upgrade Grandpa's toolbox

Keep it warm

This is a powerful product...when handled correctly. Don't be casual in your approach.

Good Luck!

Let's pave the world with the best asphalt. Hi-mod will give you an amazing road.



Victor Johnson

Operations Manager

Geneva Rock Products Inc

Utah State Advisor for NAPA

Dan McDaniel

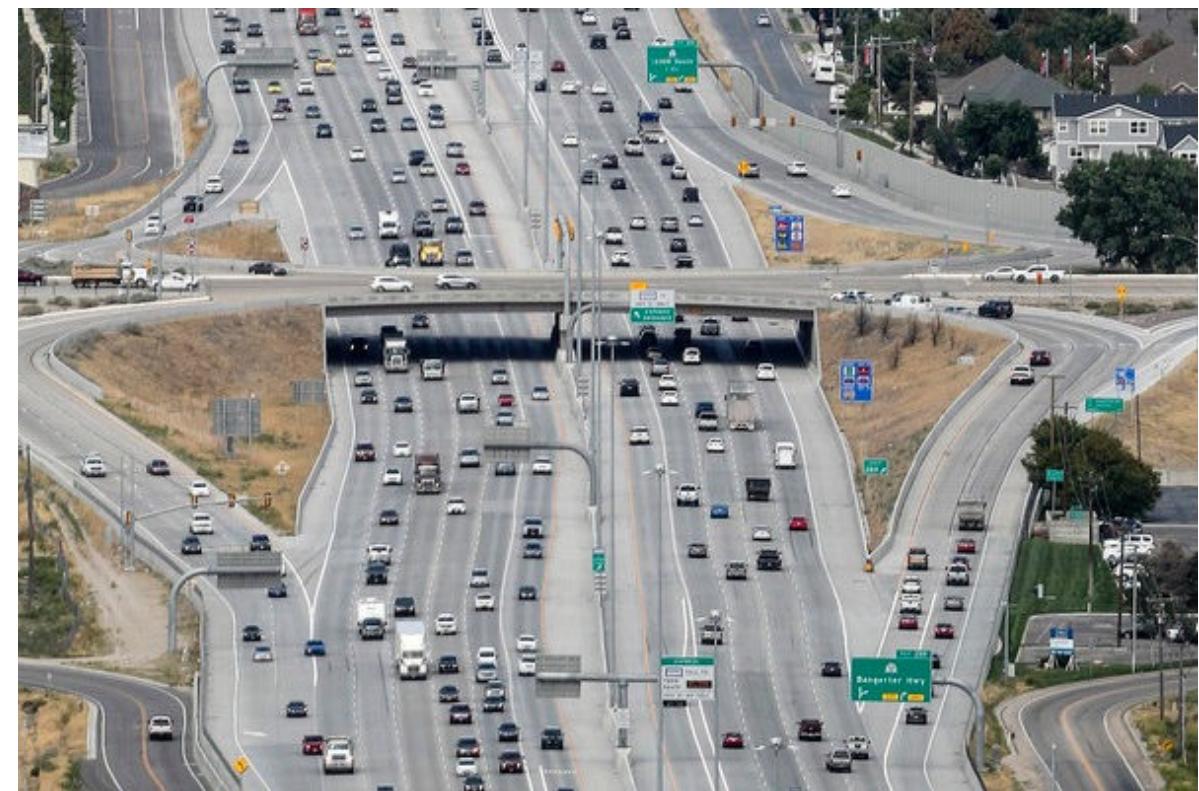
Construction Quality Control Manager

Geneva Rock Products Inc

Asphalt

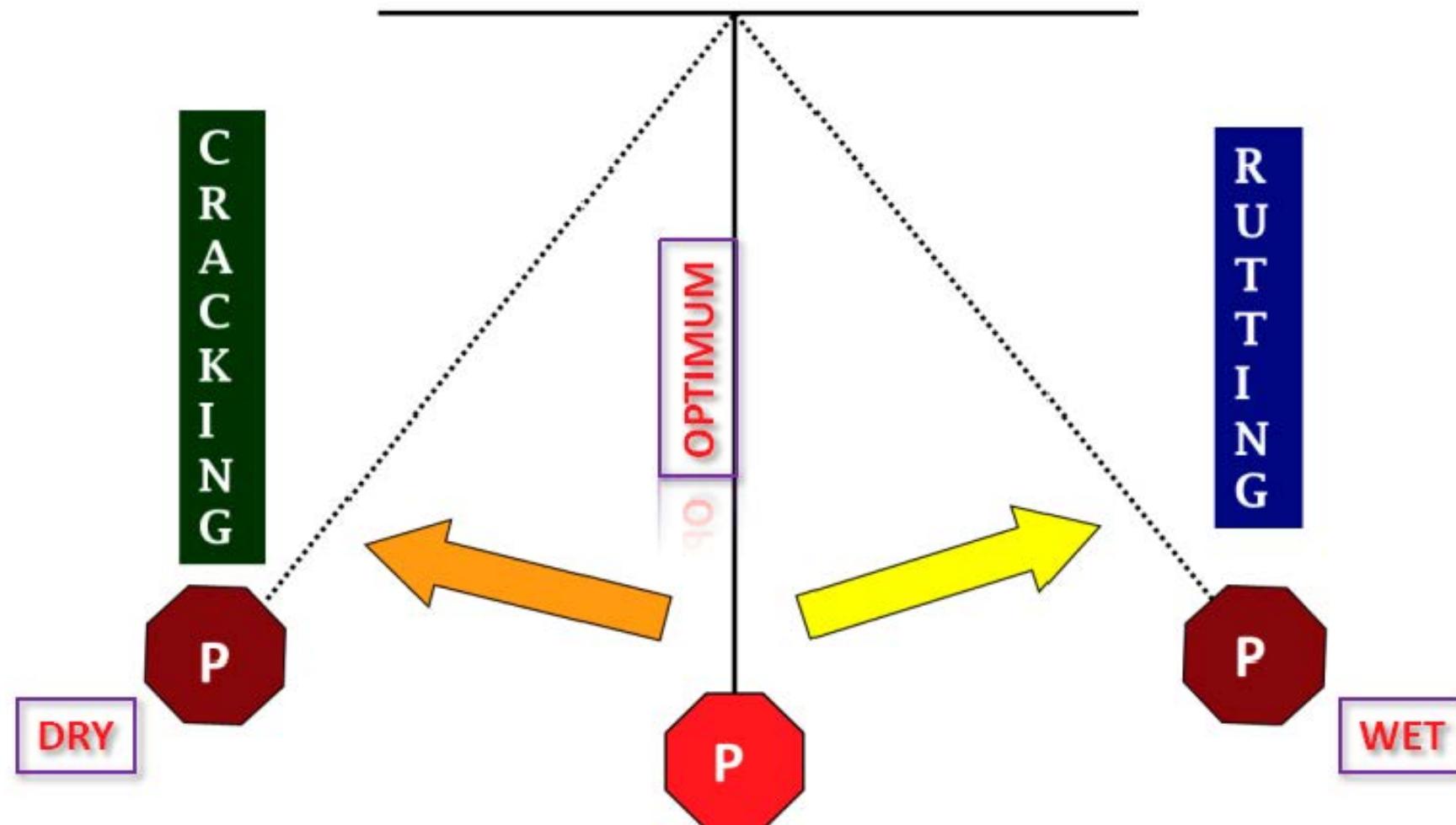

*HI Mod – National Meeting
December 17, 2025*

Asphalt From the Mountain to the Road


Objectives

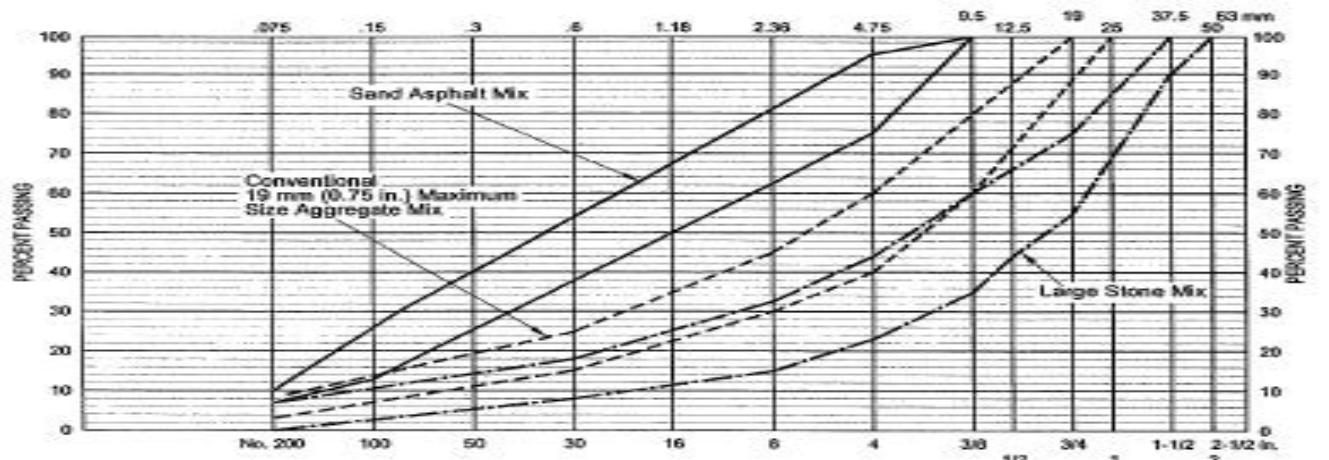

- Bridge engineering innovation with real-world contractor execution
- Share the contractor's perspective on producing and placing HMHMA
- Highlighting
 - Aggregate production
 - Asphalt Production
 - Asphalt Paving

Relevant


Choices

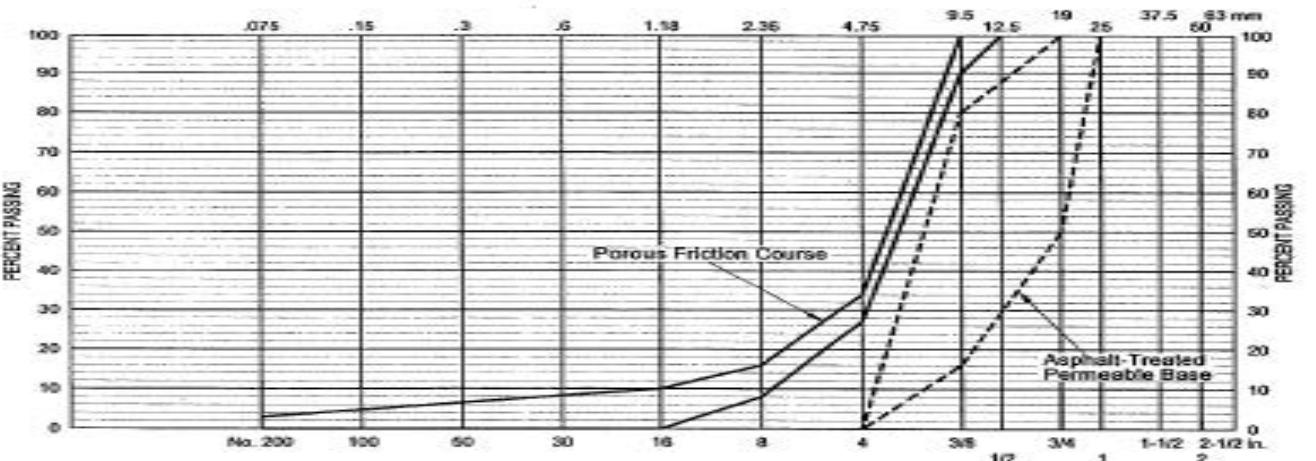
From the Mountain to the Road

Mix Design

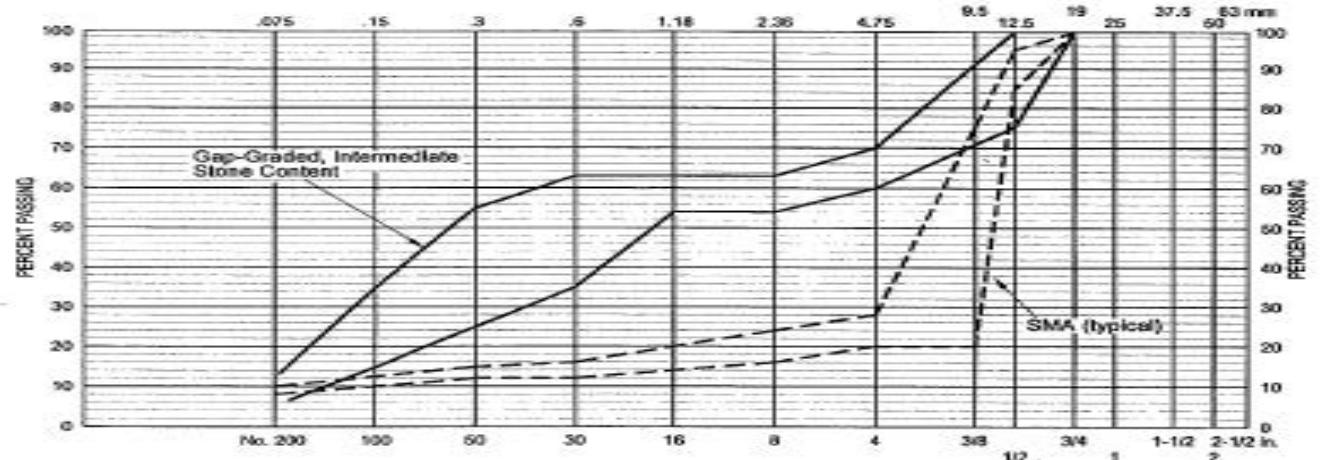

Pendulum of Asphalt Mix Performance

Aggregate Production

Method, Man Power, Environmental, Material, Machine



Sand Asphalt Mix


Conventional
19 mm (0.75 in.) Maximum
Size Aggregate Mix

Large Stone Mix

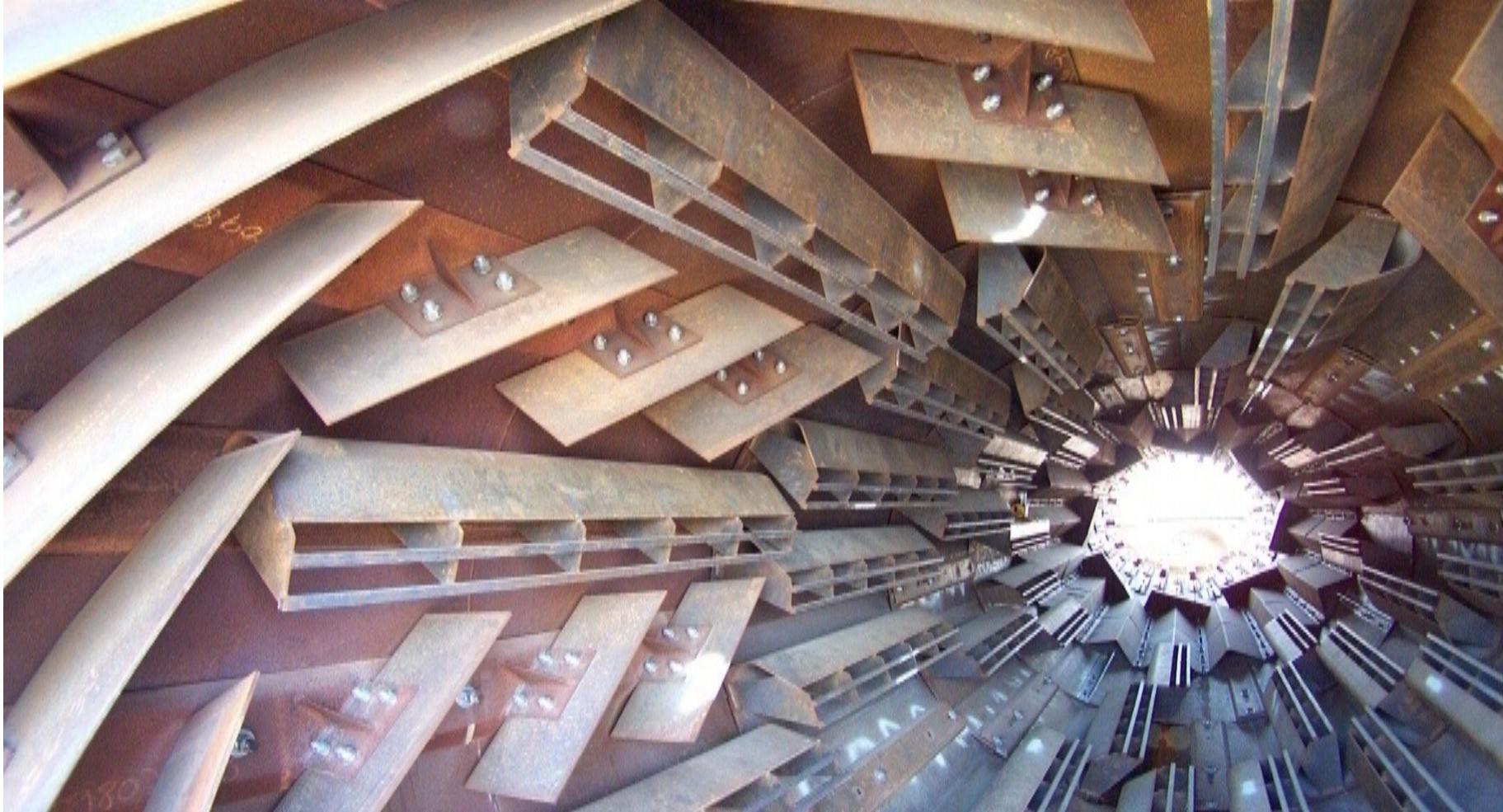
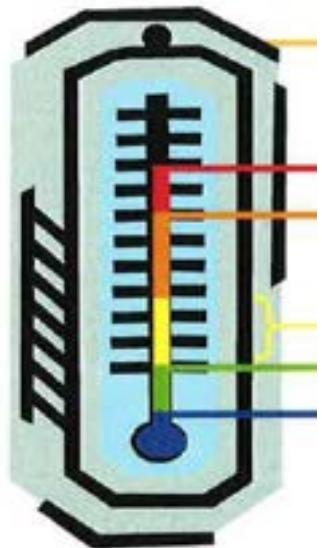
Porous Friction Course

Asphalt-Treated
Permeable Base

Gap-Graded, Intermediate
Stone Content

SMA (typical)

Aggregate Production

- Responsible use of aggregates
 - Pit/Quarry Balance: no high-grading of aggregate sources
 - Use of Reclaimed asphalt (RAP)
- No need to make a one-off mineral filler
- Overall lower aggregate cost

Asphalt Production

Method, Man Power, Environmental, Material, Machine

Asphalt Plant Production

- Less Labor (No fiber chucker)
- No SMA mortar (need more feeders or auger)
- Tons per hour increase vs. SMA
 - Reduced drag slat amp overload
 - Drum vailing is more efficient because of the gradation structure
- Eliminates drain-down and stringers
- Bag House efficiency – less carry through

Asphalt Paving

Method, Man Power, Environmental, Material, Machine

Asphalt Paving

- **Density:**
 - Achieved faster — lower air voids (50 Nd).
 - Even bridge decks reach compaction with minimal to no vibration.
- **Joint Compaction:**
 - Requires new best practices, but results are excellent once refined.
- **Smoothness:**
 - Tougher at deeper depths, but improved with experience and strong crews.

Questions?

Chris Campbell

Granite Construction

Utah QC Manager

HMHMA vs SMA

Production

- HMHMA does not require the use of fibers or mineral filler
- Less plant equipment (fiber machine)
- 76-34 tends to pump easier than a 70-28
- HMHMA can be produced at higher production rate without amping out the drag slat
- HMHMA does not have drain down issues
- HMHMA not as gap graded as SMA resulting in better agg pit balance
- Use of Rap allowed (environmental considerations)

Quality Control

- Both mixes sampled at the plant
- HMHMA has less segregation due to agg structure
- Can use a riffle splitter vs quartering on table
- Better lab to lab correlation

GRANITE

HMHMA vs SMA

Density

- **HMHMA requires less effort to achieve mat densities vs SMA (while still targeting higher % compaction)**
- **HMHMA densities more consistent across the mat and especially along unconfined pavement**
- **Joint Compaction required for HMHMA and not for SMA leading to better joint performance**
- **Able to achieve density with no vibration on bridge decks**
- **Higher density target (96% vs 94%) has potential to increase the life of pavement**

HMHMA Best Practices

- Similar Best Practices to HMA
- Ensure splitting at hotter temps
- Breakout Rice's as soon as possible
- Mix will hold heat at thicker lifts. Factor in for coring and traffic opening

