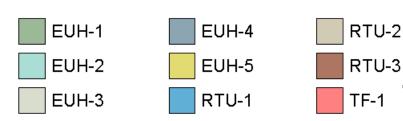
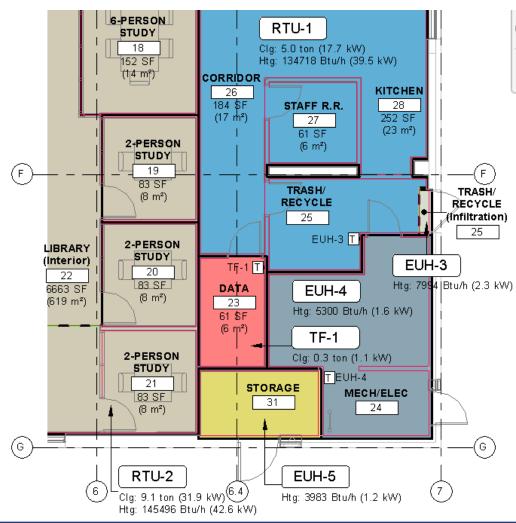
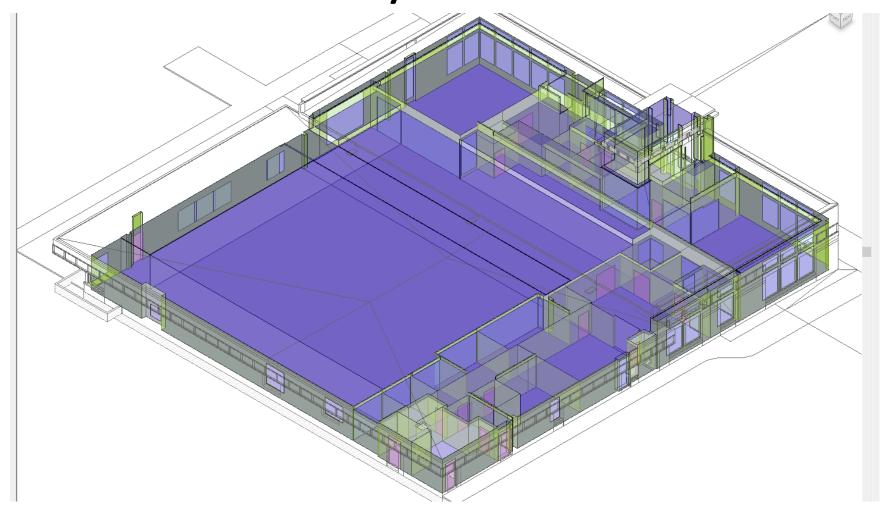

Enhancing Mechanical Engineering Productivity with Revit

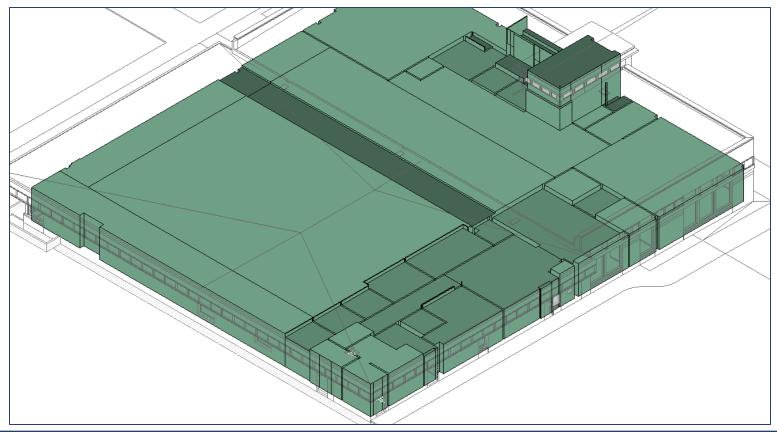



Agenda

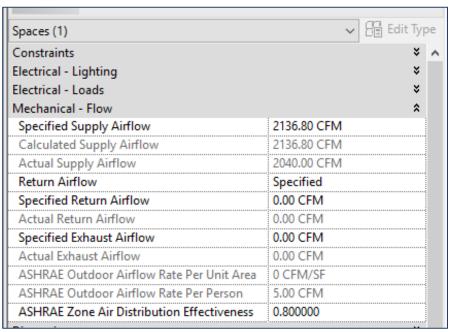
- 1. Spaces & HVAC Zones
- 2. Load Calculations and Energy Modeling
- 3. Space Airflow
- 4. Flow Propagation Methodologies
- 5. Ductwork Design and Review
- 6. ASHRAE 62.1 Ventilation Calculations
- 7. Gas Flow Propagation
- 8. Equipment Selections and Manufacturer Families
- 9. The Future ...


Spaces & HVAC Zones

- Spaces Properties
- The Thermal Zone Diagram
- Control Points
- Dual Units in Tags?



The Analytical Model

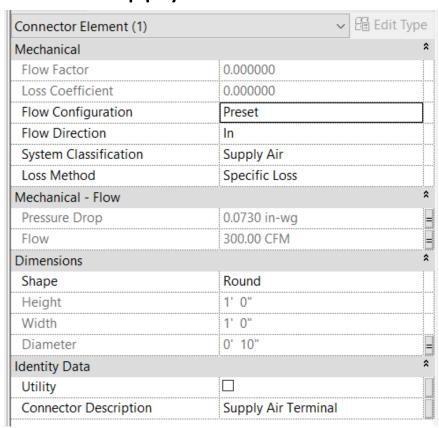

Load Calculations & Energy Modeling

Internal load calculation engine within Revit Vs Exporting Space and HVAC zone properties

gbXML and Imported Results

The Green Building XML

riiasiiig	,				
Energy Analysis	:				
Zone	RTU-3				
Plenum					
Occupiable	\square				
Condition Type	Heated and cooled				
Space Type	<building></building>				
Construction Type	<building></building>				
People	Edit				
Electrical Loads	Edit				
Calculated Heating Load	58475.97 Btu/h 58475.97 Btu/h				
Design Heating Load					
Calculated Cooling Load	46667.81 Btu/h				
Design Cooling Load	46667.81 Btu/h				
ASHRAE Default Occupant Density	50.000000				
Number of People	50.000000				

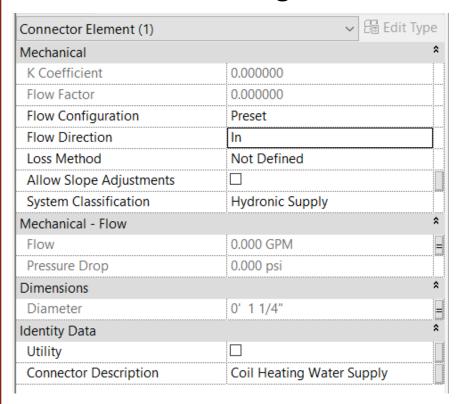

Space Airflow

	SPACE AIRFLOW SCHEDULE								
Α	В	С	D	E	F				
		SPACE PROF	PERTIES						
	LOCATION			SUPPLY AIRF	LOW				
NO.	NAME	AREA	ACTUAL	CALCULATED	DIFFERENCE (%)				
	EMBEDDED AIR TERMIN	NAL SCHEDULE							
SYMBOL	DESCRIPTION	Model	AIRFLOW						
1	ENTRY	471.6 SF	400 CFM	399 CFM	0				
I	LINEAR BAR DIFFUSER	CT-481	100 CFM						
I	LINEAR BAR DIFFUSER	CT-481	100 CFM						
J	LINEAR SLOT DIFFUS	ML-38	100 CFM						
J	LINEAR SLOT DIFFUS	ML-38	100 CFM						
2	COMMUNITY ROOM	1199.7 SF	2160 CFM	2137 CFM	11				
J	LINEAR SLOT DIFFUS	ML-38	360 CFM						
J	LINEAR SLOT DIFFUS	ML-38	360 CFM						
J	LINEAR SLOT DIFFUS	ML-38	360 CFM						
J	LINEAR SLOT DIFFUS	ML-38	360 CFM						
J	LINEAR SLOT DIFFUS	ML-38	360 CFM						
J	LINEAR SLOT DIFFUS	ML-38	360 CFM						
3	STORAGE	170.7 SF	55 CFM	54 CFM	2				
Α	CEILING DIFFUSER	TMSA	55 CFM						
4	MEN	64.7 SF TMSA	25 CFM	25 CFM	-1				
В	B CEILING DIFFUSER		25 CFM						
5	WOMEN	137.6 SF	55 CFM	54 CFM	2				
В	CEILING DIFFUSER	TMSA	55 CFM						
9	6-PERSON STUDY	157.0 SF ML-38	200 CFM	195 CFM	3				
J			200 CFM						
10	LOBBY	869.8 SF	300 CFM	298 CFM	11				
Α	CEILING DIFFUSER	TMSA	300 CFM						

- Embedded Air
 Terminal Schedule
- Balance Entire Building
- Sequence

Flow Propagation

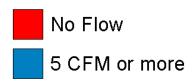
Supply Air Terminal

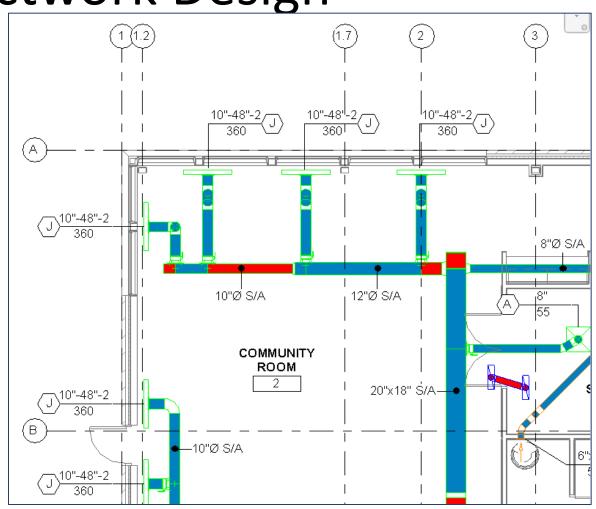


Supply Fan

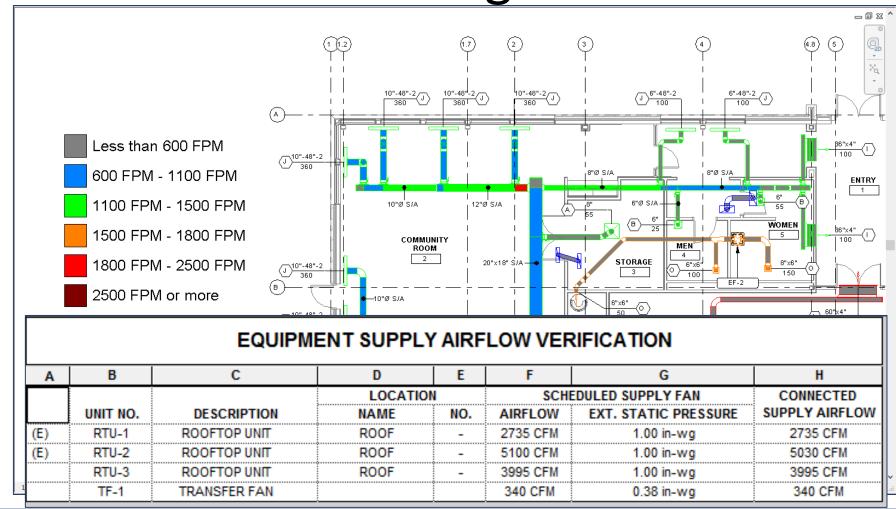
Connector Element (1)	✓ 🔠 Edit Type
Mechanical	
Flow Factor	0.000000
Loss Coefficient	0.00000
Flow Configuration	Calculated
Flow Direction	Out
System Classification	Supply Air
Loss Method	Specific Loss
Mechanical - Flow	
Pressure Drop	0.0730 in-wg
Flow	300.00 CFM
Dimensions	
Shape	Round
Height	1' 0"
Width	1' 0"
Diameter	0' 10"
Identity Data	
Utility	
Connector Description	Supply Fan Out

Flow Propagation


AHU Heating Coil

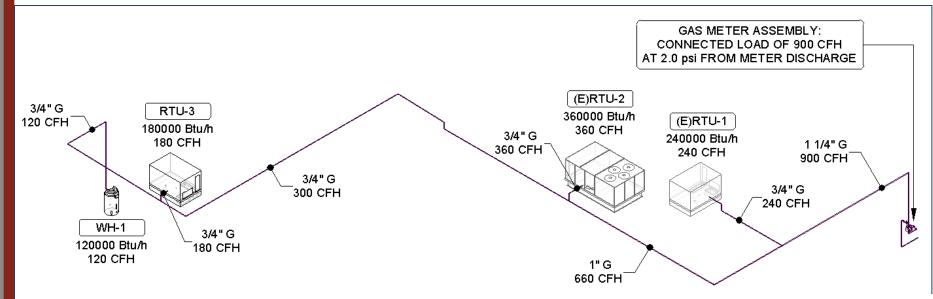

Boiler

Connector Element (1)	✓ 🔓 Edit Type
Mechanical	*
K Coefficient	0.000000
Flow Factor	0.000000
Flow Configuration	Calculated
Flow Direction	Out
Loss Method	Not Defined
Allow Slope Adjustments	
System Classification	Hydronic Supply
Mechanical - Flow	
Flow	0.000 GPM
Pressure Drop	0.000 psi
Dimensions	
Diameter	0' 1 1/4"
Identity Data	
Utility	
Connector Description	Boiler Supply Out


Ductwork Design

- Methods: Velocity, Friction, Equal Friction, or Static Regain
- Size sections or Entire Systems

Ductwork Design Review



ASHRAE 62.1 Ventilation Calculations

- Constant volume Single-Zone system
- Key Schedule for Table 6-1 from the Standard
- Error Check Scheduled Airflow
- Permitting Requirements
- Dedicated Outdoor Air Systems (DOAS)

	ASHRAE 62.1 VENTILATION RATE PROCEDURE SUMMARY										
A B C			D	Е	F	G	Н	I			
LOCATION		Occupancy	Area,	Outdoor Airflow	Outdoor Airflow Rate	Breathing Zone	Zone Air Distribution	Required Outdoor			
NO.	NAME	Category	Az	Rate Per Person, R	Per Unit Area, Ra	Outdoor Airflow, V	Effectiveness, Ez	Air Intake Flow, Vot			
9	6-PERSON STUDY	Conference/meeti	157 SF	5.0 CFM	0.06 CFM/SF	39 CFM	0.8	49 CFM			
11	TEEN	Libraries	926 SF	5.0 CFM	0.12 CFM/SF	171 CFM	0.8	214 CFM			
12	OFFICE	Office space	120 SF	5.0 CFM	0.06 CFM/SF	12 CFM	0.8	15 CFM			
13	2-PERSON STUDY	Conference/meeti	73 SF	5.0 CFM	0.06 CFM/SF	14 CFM	0.8	18 CFM			
14	OFFICE	Office space	99 SF	5.0 CFM	0.06 CFM/SF	11 CFM	0.8	14 CFM			
15	CIRCULATION WOR	Office space	537 SF	5.0 CFM	0.06 CFM/SF	52 CFM	0.8	65 CFM			
16	STORAGE	Storage rooms	54 SF	0.0 CFM	0.12 CFM/SF	7 CFM	0.8	8 CFM			
25	TRASH/ RECYCLE	Storage rooms	100 SF	0.0 CFM	0.12 CFM/SF	12 CFM	0.8	15 CFM			
26	CORRIDOR	Corridors	184 SF	0.0 CFM	0.06 CFM/SF	11 CFM	0.8	14 CFM			
27	STAFF R.R.	Toilets (public)	61 SF								
28	KITCHEN	Break rooms	252 SF	5.0 CFM	0.06 CFM/SF	45 CFM	0.8	56 CFM			
29	LIBRARIAN WORK R	Office space	498 SF	5.0 CFM	0.06 CFM/SF	50 CFM	0.8	62 CFM			
30	BOOK DROP	Non-Occupiable	17 SF								
RTU-1			3078 S	·	<u> </u>	<u> </u>	<u> </u>	531 CFM			

Gas Flow Propagation

_ [GAS LOADS SUMMARY									
	UNIT LOCATION				GAS LOAD	GAS HEATING	GAS FLOW			
	,l	NO.	DESCRIPTION	NAME	NO.	MANUFACTURER	MODEL	INPUT	VALUE (Btu/CF)	(CFH)
	(E)	RTU-1	ROOFTOP UNIT	ROOF	-	CARRIER	48TFE008	240000 Btu/h	1000	240
	(E)	RTU-2	ROOFTOP UNIT	ROOF	<u> </u>	CARRIER	48TJD024	360000 Btu/h	1000	360
		RTU-3	ROOFTOP UNIT	ROOF	-	CARRIER	48HCRE12B2M5	180000 Btu/h	1000	180
		WH-1	WATER HEATER	JANITOR	7	A. O. Smith	BTH-120	120000 Btu/h	1000	120
	Grand	l total: 4								900

Equipment Selections & Manufacturer Families

- Selection Process
- Manufacturer Content
- Third party add-in tools
- How about an industry standard mechanical shared parameter file?
- The discussion with Manufacturers has already begun

LIVE Demo Part ...

Conclusion

- Integrative Design
- Engineering Calculations
- Starter Project defined for consistent productivity, enhanced coordination, & quality control
- Industry Standard Shared Parameters

Questions

bguither@gausman.com