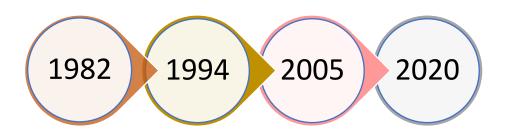
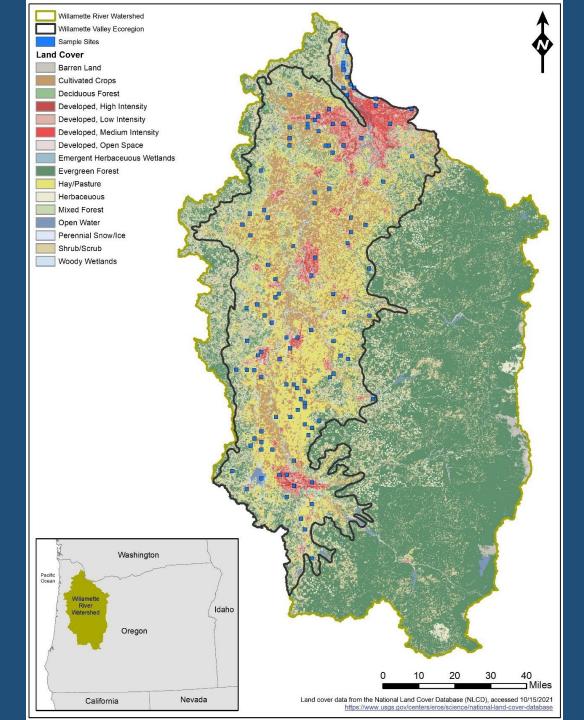


Amazon Prairie Mitigation Bank/ PHOTO: Melody Rudenko

Wetland Resource Management



Willamette Valley


STUDY OBJECTIVES

- Nature of wetland changes
- Land uses associated with wetland changes
- Wetland change dynamics

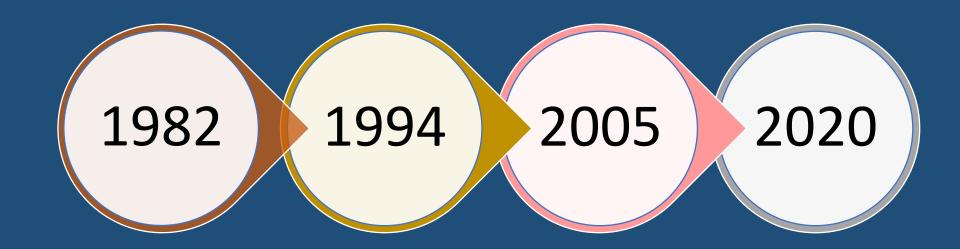
STUDY DESIGN

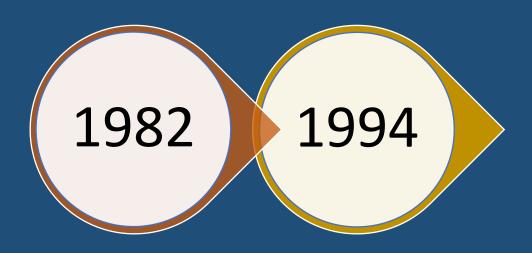
- Study Area = Willamette Valley Ecoregion
- Population = 4,790 sections
- Sample of Stratified
 Population = 711
 sections based on
 STATSCO and land use
 strata
- Subsample = 114
 square mile plots
 based on % hydric soil
- Aerial photo interpretation and mapping

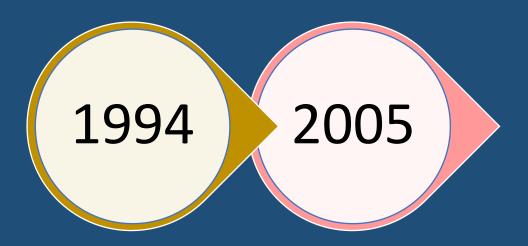
Wetland, Deepwater and Upland Habitat Types

Attribute	Wetland Types	Common Description
PFO	Palustrine Forested	Forested Wetlands
PSS	Palustrine Scrub Shrub	Shrub Wetlands
PEM	Palustrine Emergent	Marshes/Wet Pastures
PUS	Palustrine Unconsolidated Shore	Shallow/Unvegetated Ponds
PUB	Palustrine Unconsolidated Bottom	Open Water Ponds
PAB	Palustrine Aquatic Bed	Floating or Submerged Vegetation
Pf	Palustrine Farmed	Farmed Wetlands
WFP	Wet Forested Plantation	Planted Pine/Cottonwoods in Wetland Conditions
Attribute	Deepwater Habitat Types	Common Description
LAC	Lacustrine	Lakes/Reservoirs
RIV	Riverine	River Systems
Attribute	Upland Land Use/Cover Types	Common Description
UA	Upland Agriculture	Crop Producing/Pasture
UB	Upland Built (Urban)	Cities and Towns
URD	Upland Rural Development	Rural Building/Development
UFP	Upland Forested Plantation	Christmas Tree Farms; Cottonwood Plantations (drained)
UO	Upland Other	Uplands not fitting other category

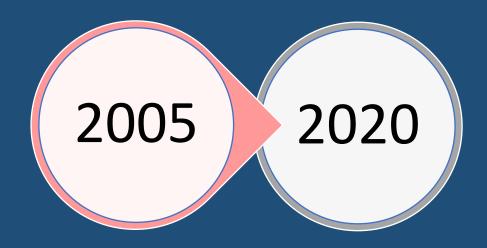
Wetland, Deepwater and Upland Habitat Types

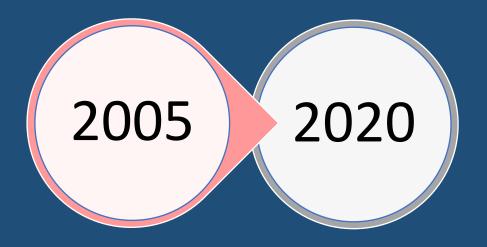

HGM Code	HGM Class	HGM Subclass
DCNP	Depressional	Closed, Nonpermanently flooded
DCP	Depressional	Closed, Permanently flooded
DO	Depressional	Outflow (open)
F	Flats	None defined
LFV	Lacustrine Fringe	Valley
RFT	Riverine	Flowthrough
RI	Riverine	Impounding
SH	Slope	Headwater
SV	Slope	Valley





1982


- Pre- state wetland conservation laws and regulation of many wetland types
- Pre- compensatory wetland mitigation requirements
- Pre- many USDA wetland conservation programs/farm bill revisions


- Net loss of 6,877 acres of wetlands to uplands (2.5%)
- 64% of wetland loss due to conversion to upland agriculture
- Highest wetland loss in palustrine emergent (52%) and palustrine forested (26%)
- Ponds increased; drivers were 928 acres from upland agriculture and 334 acres from palustrine emergent wetlands

- Net loss of 3,960 acres of wetlands (1.3%)
- 98% of wetland loss to upland land uses
- Highest wetland loss in palustrine farmed (52%) and palustrine emergent (24%) types
- 6% loss of palustrine forested wetlands
- Gains in ponds nearly doubled from the previous study period;
 drivers were 1,372 acres from palustrine emergent wetlands and
 494 acres from upland agriculture

- Net gain of 8,564 acres of wetlands (2.7%)
- Upland agriculture was largest source of wetland gains (68%)
- Gross wetland gains were primarily to palustrine farmed (57%) and palustrine emergent (23%)
- Net losses only in palustrine aquatic bed (27%) and palustrine emergent (4%)
- Net gains in other wetland types, led by palustrine unconsolidated bottom (19%) and palustrine farmed at 14%

- Gross wetland losses to lacustrine deepwater types (66%), upland built (16%) and urban residential development (10%)
- Gross wetland losses highest in palustrine unconsolidated bottom (58%) and palustrine emergent (33%)
- Net gains by HGM type were highest in all depressional subclasses (52% total) corresponding to significant gains in deepwater habitats

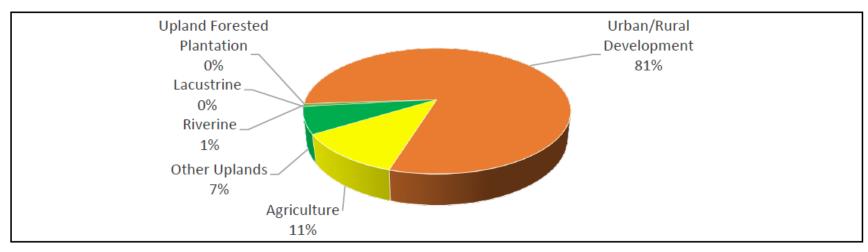


Figure 9. Causes of Net Willamette Valley Wetland Loss, 1994–2005

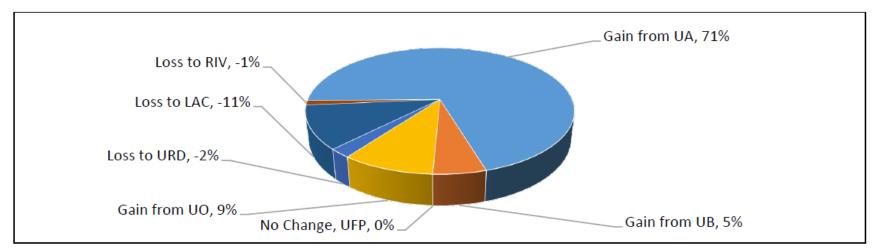
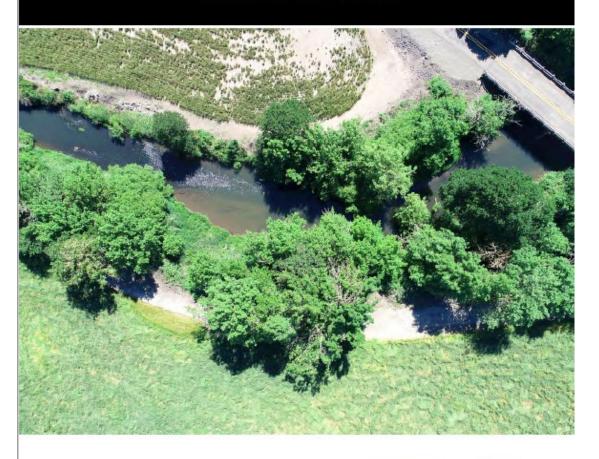


Figure 10. Causes of Net Willamette Valley Wetland Losses and Gains, 2005–2020


Prepared by:
Josh Moss, Tim Divoll, and
Tim O'Neill
As adapted from the
1994–2005 report's text
written by Janet C. Morlan
SWCA Environmental
Consultants

Assisted by Dana Hicks and Peter Ryan (DSL), Yvonne Vallette and Tony Olsen (U.S. EPA), Bill Kirchner (USFWS)

Funded by the U.S.
Environmental Protection
Agency (EPA) under
assistance agreement CD01J69201 to Oregon
Department of State Lands

Wetland and Land Use Change in the Willamette Valley, Oregon: 2005 to 2020

VOLUME 1: FINAL REPORT

Oregon Department of State Lands U.S. Fish and Wildlife Service

April 2022